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1 Introduction

The Stability and Growth Pact aims to ensure the economic sustainability of the members of

the European Union by, among other requirements, limiting the amount of debt and deficit a

country can incur1. Many EU members fail to meet debt and deficit targets, thereby requiring debt

reductions that are only fulfilled by a subset of them2. According to the Euopean Comission, these

levels of public debt put countries at a “high risk over the medium term”; however, they also recognize

that “compliance with the debt reduction benchmark could imply a too demanding frontloaded fiscal effort
that could risk to jeopardise economic growth”. This paper examines this trade-off and goes beyond

aggregate efficiency gains by looking at the social costs of debt adjustments throughout the wealth

distribution.

In simple economic environments, government debt has no social cost3. In more realistic

ones with productive capital and households heterogeneity, large amounts of debt crowd out

capital, putting upward pressure on the interest rate and downward pressure on wages. While

the median household might not be impacted, hand-to-mouth households are affected as labor

earnings are their unique source of income. Uncertainty about the future prevents the government

from delaying the fiscal adjustment until the economy recovers from the shock — a recession may

occur at any time in the future, further increasing public debt. Does aggregate uncertainty and

household heterogeneity justify a tighter fiscal intervention?

This paper studies the role of aggregate risk in determining the speed at which a government

pays back the debt incurred during bad times, focusing on an environment with households

heterogeneity and incomplete markets. To understand the trade-offs faced by a planner, I derive

the optimality conditions of a utilitarian Ramsey planner in both the cases with aggregate risk and

without. Aggregate risk yields an optimal fiscal adjustment that depends on the comovements of

public debt with five social costs. The relevant social costs are the crowding out of capital, a public

debt penalty, the utility costs associated with hand-to-mouth agents, the gains from capital income,

and a redistribution motive. I use numerical simulations to assess quantitatively the optimal fiscal

policy. I find that the implied dynamics of debt are consistent with the data and that a departure

from the tax-smoothing benchmark is required.

It is relevant to elaborate on the role of aggregate risk for optimal fiscal policy in this context.

Recent work has emphasized that in an environment with household heterogeneity and under stan-

dard utility functions, the optimal fiscal policy without aggregate shocks is to increase government

1 Countries whose governments exceed a ratio of debt-to-GDP of 60% and a deficit-to-GDP ratio above 3% are
required to undergo a series of fiscal adjustments, with a minimum annual adjustment of at least 0.5% of GDP (Darvas
and Zettelmeyer, 2023).

2 See the 2023 report from the European Commission https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=
CELEX:52023DC0631. Due to the economic conditions in 2022, “compliance with the debt reduction benchmark is not
warranted”.

3 Absent from household heterogeneity and incomplete markets, the tax smoothing result under complete markets
of Lucas and Stokey (1983), whereby the optimal fiscal policy is to use government debt as an insurance mechanism
against shocks and smooth labor income taxes, applies.
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debt to satiate its demand4. Optimal policy aims to close the gap between the interest rate and

the discount rate, leading to extremely high levels of government debt and labor income taxes. In

the long run, as taxes approach 100%, the level of consumption tends to zero. This result is due to

unreasonably strong anticipation effects about the path of future taxes. Anticipating higher future

taxes, households decide to increase their savings today, which increases the supply of assets —

Straub and Werning (2020) calls this effect the “anticipatory savings effects”. Changing the utility

function (or planner’s preferences) decreases the anticipation effect, but another, perhaps more

direct way, is to make the future uncertain; this justifies my approach5. Next, I discuss in more

detail the three contributions of this paper.

To understand the role of aggregate uncertainty, I first consider a heterogeneous agent model

without aggregate risk, essentially an Aiyagari (1994) economy. I study a utilitarian Ramsey planner

under full commitment that controls the degree of fiscal adjustment (the relevant policy rate) when

debt is not at the long-run target. Contrary to other papers, I abstract from capital income taxes6,

and relative to Aiyagari and McGrattan (1998), I do not optimize over the steady-state level of

government debt. I focus on the dynamics away from the deterministic steady state where a

planner aiming to pay back government debt will raise the labor income tax above the long-run

level. I start by studying the trade-offs associated with paying back public debt quickly. To do so, I

write the Lagrangian following Dávila and Schaab (2023) and derive the optimality conditions7.

The interpretation of these equations reveals the crucial social costs associated with public debt:

the crowding in/out of capital, the public debt penalty, and the utility cost for hand-to-mouth

individuals.

First, the optimal policy in the representative agent benchmark targets a level of public debt

such that its social cost — what I call the public debt penalty — equals the social cost of excess

demand of assets. If public debt provides liquidity, there is no cost associated with the demand for

assets, and the planner never repays its debt8.

Second, when including heterogeneous agents, the optimal tax becomes the sum of different

social costs of public debt weighted by the excess stock of government debt relative to the long-run

value of public debt — the socially costlier public debt, the faster the repayment. Relative the the

representative agent case, the planner also takes into account the utility cost specific to hand-to-

mouth individuals. A hand-to-mouth household consumes her cash on hand, so if public debt or

4 See Chien and Wen (2022), Auclert et al. (2023), Bayas-Erazo (2023) and LeGrand and Ragot (2023).
5 Dealing with aggregate uncertainty introduces an additional difficulty related to the notion of equilibrium, namely

that rational expectations are not tractable because the distribution of wealth, an object of infinite dimension, enters
the state-space. Intuitively, households need to keep track of the whole distribution of wealth and income to predict
tomorrow’s prices.

6 Capital income taxes is the topic of Straub and Werning (2020) and LeGrand and Ragot (2023). These authors revisit
the Chamley (1986)-Judd (1985) result in a richer setting.

7 I assume the existence and uniqueness of an interior solution and derive my results with a general time-separable
utility function. In a similar setting, LeGrand and Ragot (2023) provide utility functions where the interior solution
exists.

8 A recent example in which public debt can provide liquidity is Angeletos et al. (2023a).
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the speed of adjustment of debt increases, her post-tax labor income drops which has the direct

effect of decreasing her utility levels.

Finally, the planner also considers that a higher level of debt exerts upward pressure on

the interest rate, resulting in increased capital income for households with wealth; however, this

effect disproportionately benefits wealthy households. The latter effect, a redistribution motive, is

weighted by the planner against the former effect, capital income gains.

The main theoretical contribution of this paper is the introduction of aggregate shocks and

the optimal fiscal policy formula. As for the case without aggregate shocks, I start by defining the

utilitarian Ramsey planner’s problem and derive the optimality conditions. The main difference

is that I depart from rational expectations as I assume that households forecast the future paths

of capital and government debt using consistent laws of motion9. On the one hand, households

need these laws of motion to forecast the future path of labor income taxes, wages, and real interest

rates; on the other hand, the planner understands that changes in, for instance, the policy rate, will

affect these laws of motion, and in turn modify household’s implementability conditions. Up to

these considerations and a state-space that includes TFP, public debt, and capital, the optimality

conditions are essentially the same as in the case without aggregate shocks. The optimal public debt

adjustment, in the long run, is given by the covariance along the aggregate state10 of the economy

between the level of government debt and the sum of social costs of having government debt.

Different from the case without aggregate shocks, what matters now is whether these social

costs increase whenever debt increases. In other words, if public debt and its social costs comove,

the planner wants to avoid having high levels of public debt. High debt is managed through fiscal

adjustments. The stronger the correlation, the higher will be the tax in order to avoid experiencing

large social costs. In this augmented setting, the optimal fiscal adjustment depends on i) the

correlation of debt with capital income gains of the median household; ii) the correlation of debt

with crowding out of capital; iii) the correlation of debt with the redistribution motive; and iv) the

correlation of debt with the utility costs for hand-to-mouth discussed above. Finally, a couple of

terms related to bounded rationality also appear in the formula. They capture that a perturbation

to the policy rate changes how beliefs about the future paths of aggregate variables are determined.

To study the quantitative implications of the optimal tax, I calibrate and numerically solve this

one-asset heterogeneous agent model with aggregate risk at the optimal policy rate. I first study

the consequences of a negative TFP shock. The response of macroeconomic aggregates is standard,

where the negative shock causes public deficit absorbed by issuing more government debt. Under

the optimal adjustment rate, the deleverage of pubic debt is front-loaded, as the bulk of the excess

debt is repaid in the first four years after the negative shock. Instead, consumption needs more than

9 These consistent laws of motion that are, on average, correct about the future path of capital and government debt,
and depend on the macroeconomic aggregates, economic fundamentals, and the policy rate.

10 Along the business cycle, there are periods of recession with low levels of TFP and capital, and high debt, and
periods of boom with high TFP and capital, and low debt. The covariance computed along the distribution generated by
these macro aggregates over the business cycle.
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20 years to recover fully. This fast adjustment of public debt is achieved via a high labor income

tax rate: a negative shock in productivity that generates a 1% drop in aggregate consumption

raises the tax rate on impact by 1.25%. This tax increase is much larger than the one under the

representative agent counterpart. Then, I compare the implied persistence of government debt to

the one from US data, which I find to be quantitatively very similar. However, debt repayment is

much more persistent in the representative agent model. The quantitative implication is that with

heterogeneous agents and aggregate risk, the social costs of government debt make it too costly

to disregard the issue of excess public debt. I also study the role of anticipations by considering a

counterfactual in which individuals are mypoic about the future path of aggregate variables. In

such case, the optimal tax triples, which indicates that the social costs associated to the anticipation

effects about the future are sizable: if individuals do not respond today to future tax adjustments,

the government can perform them without much social cost.

Layout. The rest of the paper is organized as follows. Section 2 discussed the related literature.

Section 3 introduces the model, Section 4 derives optimal policy without aggregate shocks and

Section 5 does the same with aggregate risk. Section 6 contains the quantitative assessment and

Section 7 concludes. Proofs are provided in Appendix A.

2 Related literature

This paper contributes to the literature on optimal fiscal policy. The seminal contribution is Lucas

and Stokey (1983) that derived a tax-smoothing result in which the government insures against

unexpected shocks (e.g. an unexpected war that temporarily increases government spending)

by increasing public debt and smooths labor income taxes. These results are derived in a setting

with a representative agent and a government that has access to state-contingent debt. Aiyagari

et al. (2002) show that the results are essentially the same if the government has only access to

one-period bonds. I extend their model with household heterogeneity and incomplete markets and

study the extent to which these new features yield a departure from tax smoothing. It is possible to

relate these extra costs to the work by Angeletos et al. (2023a). They study optimal policy in an

economy where public debt serves as collateral (public debt provides liquidity) but introduces a

social cost from taxation. Albeit doing it in a setting without aggregate shocks, they find that at the

optimum, the response of taxes to a negative government spending shock is front-loaded. Their

results depend on the premium that households pay for debt, namely the difference between the

interest rate and the discount rate. This premium is also present in my optimal policy rate.

In settings with heterogeneous agents arising from uninsurable labor productivity risk in the

tradition of Bewley-Huggett-Aiyagari (Bewley, 1983; Huggett, 1993; Aiyagari, 1994), whilst much is

known on the positive side of the consequences of public debt with household heterogeneity11, the

11 See, among many others Heathcote (2005), Auclert et al. (2018) and Ferriere and Navarro (2023).
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literature has only recently put attention to optimal fiscal policy. The two exceptions are Aiyagari

(1995) which assumes the existence of a Ramsey steady-state and shows that optimal capital taxes

are positive and Aiyagari and McGrattan (1998) which computes the optimal level of public debt in

the long run. I deviate from them in three dimensions. First, I study the role of aggregate shocks

as justified above. Second, I focus on the dynamics away from the deterministic steady-state as

I am interested in the speed of adjustment of debt, rather than in the optimal quantity of debt.

Finally, I derive my results using a continuous time specification of the model because it allows me

to characterize the role of hand-to-mouth households as Dávila and Schaab (2023) show.

Recently, several papers have studied the existence of such a Ramsey steady-state. Chien and

Wen (2022) and Auclert et al. (2023) find that the Ramsey steady-state does not exit for separable

CRRA preferences, LeGrand and Ragot (2023) shows existence with several preferences, and Bayas-

Erazo (2023) use heterogeneous welfare weights as in Dávila and Schaab (2022) and LeGrand and

Ragot (2023) to restore existence. By allowing for aggregate uncertainty, I restore existence and

uniqueness, although I only verify this result numerically.

Related to the timing of taxes, Angeletos et al. (2023b) argue that a delay in fiscal adjustment

is optimal because of the persistence of the boom generated: as the fiscal adjustment is delayed,

debt returns to trend on its own and the required future tax hike vanishes. The presence of this

phenomenon becomes impossible with aggregate uncertainty as along this hypothetical path of

debt towards its pre-shock level, it might be that other negative shocks take place, which in turn

will increase debt further. When introducing aggregate shocks, Bhandari et al. (2017b) finds that the

optimal level of debt is close to zero and that the optimal policy for government debt displays slow

mean reversion (a half-life of almost 250 years), although they derive these results in a setting where

there are no binding borrowing constraints. In Bhandari et al. (2017a), they consider heterogeneous

households and incomplete markets, but abstract from aggregate shocks and show that the results

are qualitatively similar. Compared to these two papers, I undertake a different exercise as I

consider a smaller set of policy instruments. This simplification allows me to analyze the case with

aggregate shocks and heterogeneous households.

By adding aggregate risk in a model with household heterogeneity, I relate to the literature

started with Krusell and Smith (1998). Thereafter, improvements have been proposed to the

original approach. For instance, Ahn et al. (2018) extend standard linearization techniques to the

heterogeneous agent context. However, when evaluating the welfare implications of a policy, one

needs to perform higher-order approximations. Dávila and Schaab (2023) use sequence-space

Hessians, generalizing the sequence-space Jacobians introduced by Auclert et al. (2021), which

builds on Boppart et al. (2018), that are useful to perform positive analysis. My approach is to

solve the model globally to capture all the non-linearities induced by borrowing constraints and

aggregate risk.
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3 Model

The model takes as its starting point the standard heterogeneous-agent productive economy

framework first introduced by Aiyagari (1994). When analyzing the role of aggregate risk, I allow

for shocks in the total factor productivity (TFP) level, otherwise I focus on a one time unanticipated

shock. In sum it represents a departure from the textbook real business cycle setting (Kydland and

Prescott, 1982; Romer, 2012) by including uninsurable labor income risk.

3.1 Households

The economy is populated by a continuum of households. Facing idiosyncratic earnings risk and, if

relevant, aggregate uncertainty, households make consumption, labor supply and savings decisions

across time. The idiosyncratic state of a household consists of its portfolio position, made up of

liquid assets, and its earnings status.

Household preferences are defined over consumption and labor, given by

max E0

∫ ∞

0
e−ρtu(ct, ℓt)dt, (1)

where ct is the rate of consumption and ℓt is the rate of labor supply. Households can trade a liquid

risk-free asset, in quantity at, whose return is denoted rt and its position evolves according to

ȧt = rtat + (1 − τt)wtztℓt − ct, (2)

where effective units of labor income are given by ztℓt, and where zt represents uninsurable labor

earnings risk. Per effective unit of labor income wage is wt and τt is a time-dependent labor income

tax. Finally, individuals are subject to a borrowing constraint on their holding of assets, namely

at ≥ a with a ≤ 0.

Labor earnings risk. Households face uninsurable risk encoded in the state variable zt, where

log-labor productivity follows a continuous-time AR(1) processes, formally an Ornstein-Uhlenbeck

process, given by

dlog(zt) = −θz log(zt) + σzdWt, (3)

where θz > 0 is the persistence of the process, where σz denotes the volatility and where Wt is an

individual specific Brownian motion.

Cross-sectional distribution. Since I abstract from permanent heterogeneity, each individual can

be indexed by a pair of wealth and earnings (a, z), that forms a cross-sectional distribution denoted

gt(a, z). In the presence of aggregate risk, such distribution is conditional on an aggregate state.
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3.2 Firms

A representative firm produces the consumption good using capital Kt and labor Lt according to a

Cobb-Douglas technology augmented by aggregate productivity,

Yt = ZtKα
t L1−α

t ,

where Zt is total factor productivity (TFP), which is the exogenous source of aggregate productivity

shocks. Whenever I abstract from aggregate uncertainty, I focus on potentially time-varying levels

of TFP {Zt}∞
t=0. Otherwise, I assume log TFP follows a continuous-time AR(1) processes12.

The market for inputs is assumed to be competitive,

wt = (1 − α)
Yt

Lt
and rt = α

Yt

Kt
− δ,

where δ is the depreciation rate per unit of capital.

3.3 Government

The government uses tax revenue and government debt to finance a constant amount of government

spending Ḡ. Government debt evolves according to

Ḃt = rtBt + Ḡ − τtwtLt

where the government issues one-period risk-free bounds denoted Bt, and by a no-arbitrage

condition its cost is the same as the one for capital. The functional form of the labor tax τt is chosen

so that government debt mean-reverts to a level B̄ = E[Bt], and the adjustmento of public debt is

governed by the policy rate τa,

τt = τ̄ + τa
t (Bt − B̄). (4)

The base level τ̄ yields a balanced budget in the deterministic steady-state (with variables denoted

with upper lines), which means r̄B̄ + B̄ = τ̄w̄L̄. The term τa
t > 0 captures the speed of adjustment

of public debt, and one can interpret it as the extend of fiscal austerity over the business cycle. Since

government spending is constant13, a level of debt above the long-run level can be payed back in

three ways: i) lower interest rates, ii) higher wages, and iii) larger adjustments of public debt.

12 Precisely, I assume log-productivity is given by

d log(Zt) = −θZ log(Zt) + σZdW̃t.

where W̃t is a Brownian motion common to all households.
13 I assume a constant level of government debt to solely focus on the adjustment necessary when there is excess

of debt. A version of this model including government spending shocks as an additional source of aggregate risk
will exacerbate the negative consequences of debt if a negative TFP shock and a positive government spending shock
happens to arrive at the same period.
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3.4 Equilibrium

First, I define the notion of competitive equilibrium without aggregate shocks. Then, I include TFP

shocks by departing from rational expectations about the way individuals form expectations about

future aggregate variables.

Definition 1. (Competitive Equilibrium without Aggregate Shocks) Given an initial distribution over
assets and earnings level, g0(a, z), and given a path of the policy rate {τa

t } and a path for shocks {Zt}, an
equilibrium is defined as paths for prices {rt, wt}, aggregates {Yt, Lt, Ct, Bt, Kt, At, It}, individual allocation
rules {ct(a, z), ℓt(a, z), st(a, z)}, and a path of distributions {gt(a, z)} such that households optimize, firms
optimize, and markets for goods and bonds clear, that is,

Yt = Ct + It + Ḡ (5)

At = Kt + Bt (6)

where Ct =
∫∫

ct(a, z)gt(a, z)dadz, and so on for the rest of the aggregates, and where At =
∫∫

agt(a, z)dadz
denotes aggregate wealth held by households. Investment is given by It = δKt +

∫∫
st(a, z)gt(a, z)dadz

where st(a, z) is individual savings.

In order to tackle the issue of infinite dimensionality of the state-space with aggregate shocks,

I assume a particular notion of bounded rationality, which is both useful to write the Ramsey

problem, as well as for the numerical implementation. With aggregate uncertainty, all variables

become a function of the aggregate state.

Assumption 2. (Bounded Rationality) I assume that households forecast the future path of capital and
government debt using the current value of TFP, capital and public debt

K̇t = µK(Γt) and Ḃt = µB(Γt) (7)

where the aggregate state is given by Γt = (Zt, Kt, Bt). These functions minimize the L2 norm between the
predicted path of Kt and Bt and the realized one.

Definition 3. (Competitive Equilibrium with Aggregate Shocks under Assumption 2) Given an initial
distribution over assets, earnings level and the aggregate state, g0(a, z, Γ), and given a policy rate τa, an equi-
librium is defined as paths for prices {rt(Γ), wt(Γ)}, aggregates {Yt(Γ), Lt(Γ), Ct(Γ), Bt(Γ), Kt(Γ), At(Γ), It(Γ)},
individual allocation rules {ct(a, z, Γ), ℓt(a, z, Γ), st(a, z, Γ)}, and a distribution {gt(a, z, Γ)} such that
households optimize, firms optimize, markets for goods and bonds clear, and the process underlying the
formation of beliefs is consistent with Assumption 2.

3.5 Implementability

To conclude the description of the environment, since I focus on Ramsey planners that pick among

implementable conditions, I state them.
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First, a Ramsey planner must respect individual’s optimal consumption-savings decision,

which amounts to account for

∂cut(a, z, Γ) = ∂aVt(a, z, Γ) (8)

where ut(a, z, Γ) = u(ct(a, z, Γ), ℓt(a, z, Γ)) and marginal utility of consumption ∂cut(a, z, Γ) =
∂ut(a,z,Γ)
∂ct(a,z,Γ) . This first optimality condition equates marginal consumption to private marginal value of

wealth. Second, a Ramsey planner must respect the intratemporal substitution between labor and

consumption, namely

∂ℓut(a, z, Γ) = −(1 − τt(Γ))wt(Γ)z∂cut(a, z, Γ) (9)

equating the private marginal utility cost of labor, ∂ℓut(a, z, Γ) = ∂ut(a,z,Γ)
∂ℓt(a,z,Γ) , to the private marginal

benefit of working, that is, the marginal utility of consuming the resources from working. Notice

that now the labor income tax is now indexed by the aggregate state Γ. Third, a Ramsey planner

needs to account for the evolution of private lifetime utility Vt(a, z, Γ) which is given by a Bellman

equation

ρVt(a, z, Γ) = ut(a, z, Γ) + Et

[
dVt(a, z, Γ)

dt

]
(10)

or, more formally, a Hamilton-Jacobi-Bellman (HJB) equation in continuous time. The continuation

value is Et
[ dVt(a,z,Γ)

dt

]
= ∂tVt(a, z, Γ) +AtVt(a, z, Γ), where At is the infinitesimal generator14 of the

stochastic processes for (a, z, Γ). Fourth, the planner internalizes that changes in the policy rate

affect the measure of individuals in each state of the economy. The evolution of the cross-sectional

distribution is governed by a so-called Kolmogorov forward equation that obeys

∂gt(a, z, Γ) = A∗
t gt(a, z, Γ) (11)

where A∗
t is the adjoint operator of At, see Achdou et al. (2022) for a formal description of these

objects. The perceived laws of motion defined in Assumption 2 are encoded in At, which means

that whenever the planner makes policy changes, she does not only affect the evolution of wealth,

but also the beliefs about the evolution of capital and government debt. By the choice of the labor

earnings risk process, I abstract form cyclicality of labor productivity shocks15. Finally, the planner

needs to make sure that bonds market clears and the government budget constraint is satisfied.

14 Formally, for any smooth function f : R5 → R where the inputs are wealth, earnings and the aggregate state, the
infinitesimal generator is

At ft(a, z, Γ) =st(a, z, Γ)∂a ft(a, z, Γ)− θzz∂z ft(a, z, Γ) +
σ2

z
2

∂zz ft(a, z, Γ)− θZZ∂Z ft(a, z, Γ) +
σ2

Z
2

∂ZZ ft(a, z, Γ)

+ µK(Γ)∂K ft(a, z, Γ) + µB(Γ)∂B ft(a, z, Γ).

where st(a, z, Γ) denotes savings. The adjoint operator, denoted A∗
t satisfies < At f1, f2 >=< f1,A∗

t f2 > where
f1 : R5 → R and f2 : R5 → R are 2 smooth functions and < ·, · > is the inner product.

15 Bilbiie et al. (2023) study the quantitative role of countercyclical income risk in a business cycle model and Schaab
(2020) measure its implication for macro uncertainty.
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4 Optimal Policy without Aggregate Shocks

It will prove useful to begin by characterizing the optimal adjustment of public debt abstracting

from aggregate shocks since the goal of the paper is to understand the role of aggregate risk.

Therefore, in this section the state-space will be (a, z) and Assumption 2 is not relevant anymore.

In Section 5 I introduce back aggregate shocks and derive optimal policy in such framework16.

Ramsey problem with commitment. I shall start by defining the Ramsey planner without ag-

gregate shocks. I derive optimal policy using the primal approach, in which the Ramsey planner

chooses among implementable competitive equilibra, that is, those that arise from a decentralized

economy.

Definition 4. (Ramsey Planner without Aggregate Shocks) A Ramsey planner with infinite commitment
horizon [0, ∞) chooses allocations, a policy, and prices17

X =
{

ct(a, z), ℓt(a, z), Vt(a, z), gt(a, z), τa
t , rt, wt, Kt, Bt

}∞

t=0

as well as multipliers
M =

{
ϕt(a, z), χt(a, z), ψt(a, z), λt(a, z), µt, θt

}∞

t=0

to maximize social welfare subject to implementability conditions

ρVt(a, z) = ut(a, z) + ∂tVt(a, z) +AtVt(a, z) (HJB)

∂cut(a, z) = ∂aVt(a, z) (FOC c)

∂ℓut(a, z) = −(1 − τt)wtz∂aVt(a, z) (FOC ℓ)

∂tgt(a, z) = A∗
t gt(a, z) (KFE)

Kt + Bt =
∫∫

agt(a, z)dadz (McK)

Ḃt = rtBt + Ḡ − τtwtLt (GvtBC)

taking as given the initial cross-sectional distribution g0(a, z) and where τt = τ̄ + τa
t (Bt − B̄). It solves,

W = min
X

max
M

E0

[
L(g0)

]
(12)

16 While I focus on infinite commitment horizon [0, ∞), it is possible to study the case where the commitment horizon
is [0, τ1) with τ1 → 0, that I refer as optimal policy under discretion, similarly as in Dávila and Schaab (2023).

17 With respect to the definition of a competitive equilibrium (Definition 1), the Ramsey planner does not optimize
directly over savings, aggregate savings and investment. The reason is that savings follow from the choice of consumption
and labor, and goods market clearing is given by the Walras law.
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where the expectation E0 is taken over the idiosyncratic, and L(g0) is the planner’s Lagrangian given an
initial cross-sectional distribution g0:

L(g0) =
∫ ∞

0
e−ρt

{ ∫∫ {
ωt(a, z)ut(a, z)gt(a, z)

+ ϕt(a, z)
[
− ρVt(a, z) + ut(a, z) + ∂tVt(a, z) +AtVt(a, z)

]

+ χt(a, z)
[

∂cut(a, z)− ∂aVt(a, z)
]

+ ψt(a, z)
[

∂ℓut(a, z) + (1 − τt)wtz∂aVt(a, z)
]

+ λt(a, z)
[
− ∂tgt(a, z) +A∗

t gt(a, z)
]}

dadz

+ θt

[
− Ḃt + rtBt + Ḡ − τtwtLt

]

+ µt

[ ∫∫
agt(a, z)dadz − Kt − Bt

]}
dt (13)

While the definition allow for a general specification of welfare weights, this paper focuses

on the utilitarian case by setting the welfare weight ω(a, z) = 1. There are six implementability

conditions, two of them, the dynamics of the Bellman equation (HJB) and the dynamics of public

debt, (GvtBC), are forward looking — in practice it means that they are ignored for the discretionary

case since the planner cannot commit on the future path of variables. These implementability

conditions can be interpreted as two promise keeping constraints, one about lifetime utility and the

other about the level of government debt.

Proposition 5. (Necessary Optimality Conditions without Aggregate Shocks) The first-order condi-
tions that solve the Ramsey planner without aggregate shocks are18

∂tϕt(a, z) = A∗
t ϕt(a, z) + ∂aχt(a, z)− ∂aψt(a, z)(1 − τt)wtz (14)

ρλt(a, z) = ut(a, z) + µta − τtwtθtℓt(a, z) +Atλt(a, z) + ∂tλt(a, z) (15)

0 = ∂cut(a, z)− ∂aλt(a, z)− χ̃t(a, z) (16)

18 Auclert et al. (2023) show that there is no interior Ramsey steady-state, instead the planner wants as much
government debt as possible to close the gap between rt and ρ. Numerical simulations of this model (with the calibration
in Section 6.1) show that the SWF is decreasing in the time-independent policy rate τa, suggesting that under a standard
calibration, my model also fails to have an interior Ramsey steady-state. However, there exist preferences for which
a Ramsey steady-state exists (LeGrand and Ragot, 2023). Here, I assume existence and uniqueness of the Ramsey
allocation.
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0 = ∂ℓut(a, z) + (1 − τt)wt∂aλt(a, z)− ψ̃t(a, z)− θtτtwtz (17)

0 =
∫∫

a
[
ϕt(a, z)∂aVt(a, z) + ∂aλt(a, z)gt(a, z)

]
dadz + ζHtM

r + θtBt (18)

θ̇t = τa
t wt

∫∫
z
[
ℓt(a, z)(ϕt(a, z)∂aVt(a, z) + ∂aλt(a, z)gt(a, z)) + ∂aψt(a, z)Vt(a, z)

]
dadz

+ τa
t θtwtLt + θt(ρ − rt) + µt + ζHtM

B (19)

0 = wt(Bt − B̄)
∫∫

z
[
ℓt(a, z)(ϕt(a, z)∂aVt(a, z) + ∂aλt(a, z)gt(a, z)) + ∂aψt(a, z)Vt(a, z)

]
dadz

+ θt(Bt − B̄)wtLt + ζHtM
τ (20)

where

χ̃t(a, z) = −χt(a, z)
gt(a, z)

∂ccut(a, z)− ψt(a, z)
gt(a, z)

∂cℓut(a, z),

ψ̃t(a, z) = −ψt(a, z)
gt(a, z)

∂ℓℓut(a, z)− χt(a, z)
gt(a, z)

∂cℓut(a, z),

and where ζHtM
r , ζHtM

B and ζHtM
τ are respectively defined in (31), (32) and (33); where the initial conditions

for the forward-looking multipliers are θ0 = ϕ0(a, z) = 0; and where equations (14)-(17) hold in the interior
space — a consequence of (HJB), (FOC c), (FOC ℓ) and (KFE) being defined only in the interior space.

Equations (14) to (19) correspond to the optimality conditions for i) the value function, ii)

the cross-sectional distribution, iii) consumption, iv) labor supply, v) the interest rate, and vi)

government debt. Equation (20) corresponds to the optimality condition for the debt adjustment.

The proof of this proposition is given in Appendix A.1. Before providing the main proposition

of this section, namely the optimal policy rate for public debt adjustment, I begin by interpreting

the necessary conditions the planner faces. This exercise features several similarities with Dávila

and Schaab (2023), altought their focus is the optimal design of monetary policy, while mine is on

optimal fiscal policy.

Before interpreting the optimality conditions, a remark is on order. For simplicity, I keep B̄
constant and see it as the level of debt that yields a balanced budget constraint given by τ̄ in the

deterministic steady-state. Others like LeGrand and Ragot (2023) choose the weights ωt(a, z) such

that the optimal deterministic steady-state level of debt is a calibrated value B̄. Nonetheless, I

optimize over {Bt}t, so a Ramsey allocation can feature a persistently higher long-run level of

debt B∞ > B̄ in case this is optimal. In turn, the steady-state labor income tax will be larger

(τ∞ = τ̄ + τa
∞ log(B∞/B̄) > τ̄) and the planner would choose a level τa

∞ > 0 such that the Ramsey

allocation exists, that is, such that the government budget is balanced. I now proceed to interpret

the seven optimality conditions. I will focus on the extra terms that are particular to the planner

and distinguish this set of equations to the implementability conditions listed in Section 3.5.

I begin by equation (14), the one corresponding to the optimality conditions with respect to
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lifetime utility. The multiplier ϕt(a, z) captures the social marginal cost of an increase in lifetime

utility. Whenever ϕt(a, z) > 0, the planner associates a social cost — a penalty — to a positive

perturbation of the lifetime utility of a households in state (a, z); likewise, if ϕt(a, z) < 0, it has

the interpretation of a reward. Therefore, I refer to it as a distributional penalty. Its evolution is

governed by an equation that shares similarities with a standard Kolmogorov Forward equation

(i.e. the equation that dictates the evolution of the cross-sectional distribution across time and at the

steady-state) extended by the term “∂aχt(a, z)− ∂aψt(a, z)(1 − τt)wtz” — without this extra term,

the distributional penalty will be equal to the cross-sectional distribution, see (KFE). Intuitively, it’s

like a life-cycle model where births increase the mass of individuals at a given state, and deaths

decrease it, albeit here is about the rise or decline of distributional penalties and rewards. Whenever

this extra term is positive, it increases the penalty (decreases the reward), and viceversa. These

increases/declines are determined by the social marginal costs of increases in consumption and

labor that I discuss below.

Now I study the optimality conditions related to optimally choosing the cross-sectional

distribution, namely Equation (15). The multiplier λt(a, z) represents the social shadow value

of increasing the mass of individuals in the state (a, z). This optimality condition represents the

social lifetime value of a household at state (a, z). First, observe that if µta − τtwtθtℓt(a, z) = 0, then

λt(a, z) would be equal to the lifetime utility function given in Equation HJB. Whenever this term

is non-zero, it acts as an extra reward that the planner perceives for increasing households’ lifetime

utility. An individual at this particular state has a quantity of assets a, which has an associated

social gain (if µt > 0) in the form of relaxing the market clearing condition for capital, since µt,

which I discuss below, is the social marginal benefit of excess supply of assets. However, the social

losses associated to decreasing the mass of individuals at state (a, z), causing a drop in tax revenue

payed by these households, generates a loss that equals τtwtθtℓt(a, z), namely the tax revenue paid

by household (a, z) expressed in social units using θt, the social marginal cost of government debt.

Whenever government debt is socially costly (θt > 0) we have τtwtθtℓt(a, z) > 0 contributing in

deceasing the social lifetime value of a household in state (a, z).
Next, I look at (16), the optimality condition arising from the choice of consumption. The

multiplier χt(a, z) represents the social shadow value of relaxing households’ consumption-savings

decisions. When χt(a, z) > 0 ,the planner perceives that households consume too much, or

equivalently do not save enough. Indeed, a positive perturbation to consumption decreases social

welfare, which is perceived by the planner as not being welfare improving. While a household

equates marginal utility of consumption to the private marginal value of wealth, the planner equates

marginal utility of consumption to ∂aλt(a, z) + χ̃(a, z). The first term represents the social marginal

value of wealth, while the second represents an extra shadow cost of changing consumption. It is

related to both the risk-aversion towards consumption, as well as with the substitutability in the

utility function between consumption and labor.

Optimally choosing labor supply yields (17). The multiplier χt(a, z) represents the social
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shadow value of relaxing households’ intratemporal substitution between consumption and labor.

When ψt(a, z) > 0, the planner perceives that the household works too much, or equivalently does

not enjoy enough leisure. As for consumption, this equation is the planner’s equivalent to the

competitive equilibrium choice of labor. The only difference is that a new shadow cost appears: if

individuals work less they pay fewer taxes, which, in case debt is socially costly, it will represent an

extra shadow cost associated to a decrease in labor as fewer debt will be repaid.

I conclude by interpreting the three optimality conditions relating to aggregate objects: interest

rates, government debt, and the policy rate. I shall start with (18), the optimality condition for the

interest rate. The first two sources of welfare gains/losses are due to individuals obtaining more

income from their saving (if a > 0) and the social valuation of the subsequent increase in wealth.

However, the hand-to-mouth individuals, whose welfare losses associated to the increase in r are

captured by ζHtM
r , are worse-off. Finally, the cost of financing government debt increases, which

generates losses if public debt is socially costly.

Next, I consider (18), the optimality condition for government debt. The multiplier θt is the

social marginal cost of government debt. Whenever θt > 0, an increase in government debt (i.e.

Ḃt > 0) decreases welfare, that is why I refer to it as a public debt penalty. This public debt penalty

will change for six different reasons. First, public debt needs to be payed by taxing labor income,

which is a distortionary tax, and the social cost associated to it is captured by planner’s cost of

having a household with a before-tax labor income of wtzℓt(a, z). Second, the associated cost will

depend on the social shadow value of relaxing/tightening the intratemporal substitution between

consumption and labor — larger taxes decrease the private marginal gains from working. Third,

the evolution of the public debt penalty depends on the current amount of debt paid today. These

social costs are weighted by the policy rate τa
t since these social costs are about debt repayment,

and the repayment of debt is done using this instrument. Fourth, the social cost of public debt only

matters to the extend it is costly, namely the difference ρ − rt. This is the premium that households

pay in equilibrium for being able to self-insure using assets. Fifth, if debt generates a crowding out

which decreases welfare, the public debt penalty will increase. Notice that µt is the social marginal

cost of excess demand of assets. When µt > 0, more assets are costly from a social point of view.

And sixth, constrained individuals dislike more debt since, other things equal, their cash-on-hand

decreases, rising the social cost of debt further.

Finally, Equation (18) corresponds to the optimality condition for the policy rate. This equation

can be interpreted as a public debt adjustment condition. The first three motives of why having

more debt may increase the social cost of debt exposed in the previous paragraph also shape the

desirability of paying this debt and they are scaled up by the excess government debt, that is, by

Bt − B̄. Finally, the effect that this increase in the policy rate has on hand-to-mouth, essentially a

decrease in their cash-on-hand, is also considered by the planner.
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Optimal public debt adjustment. Having introduced the economic interpretation of the multipli-

ers and necessary conditions, I provide the main proposition of this section, the formula for optimal

public debt adjustment without aggregate shocks. This result follows from a sensible combination

of the necessary conditions discussed above, and the proof is given in Appendix A.2.

Proposition 6. (Optimal Public Debt Adjustment without Aggregate Shocks) Optimal public debt
adjustment without aggregate shocks is given by

τa
t =

Bt − B̄
ζHtM

τ

(
µt − θ̇t −

ρ − rt

Bt
Egt

[
a∂cut(a, z)

(
1 + Θt(a, z)

)]
+ ζHtM

B

)
(21)

where Θt(a, z) = ϕt(a,z)
gt(a,z) −

χ̃t(a,z)
∂cut(a,z) , and where Egt is the expectation operator defined using the cross-

sectional distribution19.

The formula for optimal public debt adjustment without aggregate shocks shows how the

planner weights the pros and cons of repaying the debt via distortionary labor income taxes. To

shed light on all the mechanisms dictating the optimal policy rate, I rewrite the proposition as

follows. At a high level, the formula for optimal tax can be written as

τa
t = (Bt − B̄)× “sum of social costs of govt debt”.

Indeed, the higher the excess government debt relative to its long-run target B̄, the larger the

policy rate τa
t will be (assuming debt is socially costly in the first place, something that it’s not

straightforward in the RA case, see Proposition 7 bellow and neither in the HA case with standard

preferences, see Auclert et al. (2023)). Alternatively, given a (positive) level of excess debt, the

socially costlier holding government debt is the larger the policy rate, and hence the labor tax τt

will be. In the next paragraphs, I provide more details on the components of the social costs of

having government debt. Precisely, I will look at

τa
t =

excess debt︷ ︸︸ ︷(
Bt − B̄

)( contribution representative agent︷ ︸︸ ︷
µt − θ̇t +

contribution incomplete markets︷ ︸︸ ︷
(rt − ρ)

At

Bt
Egt

[
∂cut(a, z)

(
1 + Θt(a, z)

)]

+
rt − ρ

Bt
Covgt

[
a, ∂cut(a, z)

(
1 + Θt(a, z)

)]
+ ζHtM

B

)
1

ζHtM
τ︸ ︷︷ ︸

inequality concerns

,

where the covariance operator is defined using Egt . Now, I proceed to analyze the different social

costs that shape the optimal tax rate, separating them into the contribution of the representative

agent, the one coming from incomplete markets, and concluding with the redistribution concerns.

19 Formally, the cross-sectional expectation operator is defined as Egt [xt(a, z)] =
∫∫

xt(a, z)gt(a, z)dadz, with xt(a, z) :
R2 → R for all t.

15



The first term, “µt − θ̇t”, represents the contribution from a representative agent benchmark

as it is these are the only two components that are relevant in such scenario. More precisely, the

following proposition defines the target rule that a Ramsey planner follows in the representative

agent limit of this framework.

Proposition 7. (Targeting Rule for Public Debt Adjustment without Aggregate Shocks with RA) In
the RA limit, optimal public debt adjustment is characterized by

θ̇t = µt. (22)

To understand this targeting rule, it is useful to consider the tax-smoothing setting à la Lucas

and Stokey (1983). There, the planner wants to completely smooth taxes and public debt is costly,

so θt = 0. Once we introduce a supply side, an increase in public debt puts upward pressure

in the demand of assets. If this is socially costly (µt > 0), government debt acquires a positive

social cost captured by θt. Under the necessary conditions for convergence, the law of motion of

the public debt penalty is given by (22): as the cost of excess demand of assets decreases towards

zero, the penalty converges towards a stationary, possibly non-zero level θss. In particular note

that is government debt puts upward pressure to the steady-state level of assets (i.e. µ∞ > 0), the

public debt penalty tends towards infinity. In any case, if such a phenomenon is costly, namely is

µt − θ̇t > 0, the planner will have the incentive to increase the tax rate τa
t to avoid the negative

consequences associated with the presence of debt.

Next, I consider the contribution of incomplete markets into the optimal policy rate. This effect

is due to capital income gains perceived by the median consumer, and which are only presence if

markets are incomplete, that is, if households pay a premium for holding assets rt < ρ. I start by

looking at the case where Θt(a, z) = 0. It becomes clear that this term is negatively contributing to

decreasing the tax rate. Because the median household holds an amount At of assets (recall, there

is a fixed mass one of consumers) an increase in the interest rate generated by having more debt

will increase the capital income gains of this household. These gains, however, are weighted by the

increasing cost of having more debt incurred by the planner, that is, it also depends negatively on

the amount of debt. Finally, it is weighted by the differential between the market and the private

time discounting rate since debt is only costly to the extent the market pays a lower interest rate

than the private discount rate. Whenever Θt(a, z) is non-zero, this conclusion may be affected. This

term asks the following three questions, from a social point of view: i) is the individual over- or

under-consuming, ii) is the individual over- or under-working, and ii) does the individual have

a too large, or too small, lifetime utility? Depending on the response to these three questions,

the planner will over- or under-weight the private utility gains associated with an increase in the

interest rate for the median household. For instance, if the planner perceives the individual is

under-consuming, it will under-weight the utility gains generated by the rise in the interest rate,

which in turn will require larger increases to reach a given social welfare level relative to the case

16



where Θt(a, z) = 0.

Finally, the planner also has inequality considerations when optimally setting the tax rate.

These inequality concerns depend on the extend to which the capital gains are unequally distributed,

the direct utility cost for hand-to-mouth households of increasing public debt and the utility cost

for hand-to-mouth households of increasing the tax rate.

I start by the inequality concerns related to the capital gains and I first the case where

Θt(a, z) = 0 to abstract from the extra social considerations that the planner has about the ef-

fect of government debt on households. Since the marginal utility of consumption is decreasing

in wealth, the covariance Covgt

[
a, ∂cut(a, z)

]
< 0, and the larger in absolute terms this covariance

is, the more unequal the decentralized economy is. Intuitively, since an economy in which there

is more excess debt requires of a larger adjustment, whose negative consequences are specially

carried on by the wealth-poor households, and the fact that the planner dislikes having unequal

individuals makes her willing to repay the debt faster. As before, these conclusions are subject to

the extent the parameter Θt(a, z) matters, in particular, if it comoves with wealth it will decrease

the relevance of the redistribution motive, and vice versa if it negatively comoves. Finally, the

redistribution motive is weighted by (rt − ρ)/Bt capturing that the effect that excess debt has over

the cross-section of households only matters to the extent rt < ρ.

Next, there is a utility cost of increasing the level of government debt for a constrained

individual denoted ζHtM
B . Under mild conditions20, this constant is positive, which means the

planner aims to avoid large levels of government debt because it implies a decrease in the cash-on-

hand to the hand-to-mouth households. Finally, the utility cost for hand-to-mouth of increasing the

tax rate, ζHtM
τ , is positive under mild conditions. In sum, if a larger tax generates utility losses from

hand-to-mouth, then the planner wants to set a lower tax rate.

5 Optimal Policy with Aggregate Shocks

While the previous section describes how a utilitarian Ramsey planner sets optimally public debt

adjustment in a setting with heterogeneous agents but without aggregate risk, this section extends

to the case with aggregate risk. The resulting optimal policy rate formula is the main theoretical

contribution of the present paper.

Ramsey problem with commitment. In this section, I introduce back aggregate risk, so that

Assumption 2 about the notion of bounded rationality is now relevant and the state-space is

(a, z, Γ), where Γ = (Z, K, B) is the aggregate state. I start by extending Definition 4 to the case with

aggregate risk. Before that, a technical point is order. The Ramsey planner needs to set allocations

20 These mild conditions include the negative effects that a higher labor tax has on constrained individuals’ consump-
tion that cannot be compensated by a larger increase in their incentives to provide more labor supply. Instead, if the
utility losses coming from less consumption are greater than the gains from more incentives to work, then this effect
pushes for a looser policy rate.
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that are consistent with the beliefs of individuals, which in particular means that if for any given

value B̃, at aggregate state Γ = (Z, K, B̃), the planner needs to choose a mapping Bt : R3 → R such

that Bt(Γ) = B̃, and the same applies for capital. Moreover, to soften notions, I usually drop the

dependence on Γ for government debt and capital.

Definition 8. (Ramsey Planner with Aggregate Shocks) A Ramsey planner with infinite commitment
horizon [0, ∞) chooses allocations, a policy, and prices

X =
{

ct(a, z, Γ), ℓt(a, z, Γ), Vt(a, z, Γ), gt(a, z, Γ), τa
t , rt(Γ), wt(Γ), Kt(Γ), Bt(Γ)

}∞

t=0

as well as multipliers

M =
{

ϕt(a, z, Γ), χt(a, z, Γ), ψt(a, z, Γ), λt(a, z, Γ), µt(Γ), θt(Γ)
}∞

t=0

to maximize social welfare subject to implementability conditions

ρVt(a, z, Γ) = ut(a, z, Γ) + ∂tVt(a, z, Γ) +AtVt(a, z, Γ) (HJB(Γ))

∂cut(a, z, Γ) = ∂aVt(a, z, Γ) (FOC c (Γ))

∂ℓut(a, z, Γ) = −(1 − τt)wt(Γ)z∂cut(a, z, Γ) (FOC ℓ (Γ))

∂tgt(a, z, Γ) = A∗
t gt(a, z, Γ) (KFE(Γ))

Kt + Bt =
∫∫

agt(a, z, Γ)dadz (McK(Γ))

Ḃt = rt(Γ)Bt + Ḡ − τtwt(Γ)Lt(Γ) (GvtBC(Γ))

taking as given the initial cross-sectional distribution g0(a, z, Γ) and where τt = τ̄ + τa
t (Bt(Γ)− B̄). That

is,
W = min

X
max

M
E0

[
L(g0)

]
where the expectation E0 is taken over the idiosyncratic and aggregate state, and L(g0) is the planner’s
Lagrangian given an initial cross-sectional distribution g0:

L(g0) =
∫ ∞

0
e−ρt

∫ { ∫∫ {
ωt(a, z, Γ)ut(a, z, Γ)gt(a, z, Γ)

+ ϕt(a, z, Γ)
[
− ρVt(a, z, Γ) + ut(a, z, Γ) + ∂tVt(a, z, Γ) +AtVt(a, z, Γ)

]

+ χt(a, z, Γ)
[

∂cut(a, z, Γ)− ∂aVt(a, z, Γ)
]

+ ψt(a, z, Γ)
[

∂ℓut(a, z, Γ) + (1 − τt)wt(Γ)z∂aVt(a, z, Γ)
]
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+ λt(a, z, Γ)
[
− ∂tgt(a, z, Γ) +A∗

t gt(a, z, Γ)
]}

dadz

+ θt(Γ)
[
− Ḃt + rt(Γ)Bt + Ḡ − τtwt(Γ)Lt(Γ)

]

+ µt(Γ)
[ ∫∫

agt(a, z, Γ)dadz − Kt − Bt

]}
dΓ dt

As in the previous section, I focus on the utilitarian case by setting the welfare weight

ω(a, z, Γ) = 1. There are six implementability conditions, ordered as before: a Bellman equa-

tion, the first-order conditions for consumption and labor, the evolution of the cross-sectional

distribution, the dynamics of debt, and market clearing. Notice that now, everything is indexed by

the aggregate state Γ.

Proposition 9. (Necessary Optimality Conditions with Aggregate Shocks) The first-order conditions
that solve the Ramsey planner with aggregate shocks are21

∂tϕt(a, z, Γ) = A∗
t ϕt(a, z, Γ) + ∂aχt(a, z, Γ)− ∂aψt(a, z, Γ)(1 − τt)wt(Γ)z (23)

ρλt(a, z, Γ) = ut(a, z, Γ) + µt(Γ)a − τtwt(Γ)θt(Γ)ℓt(a, z, Γ) +Atλt(a, z, Γ) + ∂tλt(a, z, Γ) (24)

0 = ∂cut(a, z, Γ)− ∂aλt(a, z, Γ)− χ̃t(a, z, Γ) (25)

0 = ∂ℓut(a, z, Γ) + (1 − τt)wt(Γ)∂aλt(a, z, Γ)− ψ̃t(a, z, Γ)− θt(Γ)τtwt(Γ)z (26)

0 =
∫∫

a
[
ϕt(a, z, Γ)∂aVt(a, z, Γ) + ∂aλt(a, z, Γ)gt(a, z, Γ)

]
dadz + ζHtM

r (Γ) + θt(Γ)Bt (27)

θ̇t(Γ) = τa
t wt(Γ)

∫∫
z
[
ℓt(a, z, Γ)(ϕt(a, z, Γ)∂aVt(a, z, Γ) + ∂aλt(a, z, Γ)gt(a, z, Γ))

+ ∂aψt(a, z, Γ)Vt(a, z, Γ)
]
dadz + τa

t θt(Γ)wt(Γ)Lt(Γ) + θt(Γ)(ρ − rt(Γ))

+ µt(Γ) + ζHtM
B (Γ)− EB(Γ) (28)

0 = wt(Γ)(Bt − B̄)
∫∫

z
[
ℓt(a, z, Γ)(ϕt(a, z, Γ)∂aVt(a, z, Γ) + ∂aλt(a, z, Γ)gt(a, z, Γ))

+ ∂aψt(a, z, Γ)Vt(a, z, Γ)
]
dadz + θt(Γ)(Bt − B̄)wt(Γ)Lt(Γ) + ζHtM

τ + Eτ (29)

21 Footnote 18 surveys what we know about the existence and uniqueness of a Ramsey allocation in Aiyagari
economies with heterogeneous but without aggregate shocks. In the economy with aggregate shocks and under the
notion of bounded rationality used throughout this section, I verify numerically that for a wide range of values of τa,
there exists a stationary equilibrium and the social welfare function has a unique maximum.
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where

χ̃t(a, z, Γ) = −χt(a, z, Γ)
gt(a, z, Γ)

∂ccut(a, z, Γ)− ψt(a, z, Γ)
gt(a, z, Γ)

∂cℓut(a, z, Γ),

ψ̃t(a, z, Γ) = −ψt(a, z, Γ)
gt(a, z, Γ)

∂ℓℓut(a, z, Γ)− χt(a, z, Γ)
gt(a, z, Γ)

∂cℓut(a, z, Γ),

where EB(Γ) and Eτ are defined respectively in (34) and (35), and where ζHtM
r (Γ), ζHtM

B (Γ) and ζHtM
τ are

respectively defined in (36), (37) and (38); where the initial conditions for the forward-looking multipliers
are θ0(Γ) = ϕ0(a, z, Γ) = 0; and where equations (23)-(26) hold in the interior space — a consequence of
(HJB(Γ)), (FOC c (Γ)), (FOC ℓ (Γ)) and (KFE(Γ)) being defined only in the interior space.

Equations (23) to (28) correspond to the optimality conditions for i) the value function, ii)

the cross-sectional distribution, iii) consumption, iv) labor supply, v) the interest rate, and vi)

government debt. Equation (29) corresponds to the optimality condition for the debt adjustment.

The intuitions for the necessary conditions are the same as in Section 4 except for the aggregate

state Γ and the two functions EB(Γ) and Eτ. These last two functions are a byproduct of the notion

of bounded rationality, and they represent the social cost induced by changing the belief formation

due to the planner’s actions. I continue focusing on the utilitarian case by letting ωt(a, z, Γ) = 1.

Optimal long-run public debt adjustment. Having introduced the necessary conditions for

optimality, now extend Proposition 6 to include aggregate risk. Hereafter, I focus on the long-run

Ramsey allocation.

Proposition 10. (Optimal Public Debt Adjustment with Aggregate Shocks in the Long-Run) Optimal
public debt adjustment with aggregate shocks in the long-run is given by

τa =
1

ζHtM
τ + Eτ

CovΓ

[
B, (ρ − r)θ̃ + µ̃ + ζ̃HtM

B − ẼB

]
where variables with tildes denote variables normalized by the ergodic distribution of the aggregate state Γ,
with associated covariance operator CovΓ[·, ·]22.

The formula for optimal public debt adjustment with aggregate shocks shows how the planner

weighs the pros and cons of repaying the debt via distortionary labor income taxes. To shed light

on all the mechanisms dictating the optimal policy rate, I rewrite the proposition as follows. At a

high level, the formula for optimal tax can be written as

τa
t = CovΓ

(
B, “sum of social costs of govt debt”

)
.

22 Formally, a distribution gΓ emerges over the aggregate state space (TFP, capital and government debt). This is
because, in the stochastic steady state, TFP shocks are hitting the economy which change the value of capital and public
debt. The resulting ergodic distribution is denoted gΓ. Then, it is possible to define an expectation and a covariance
operator.
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Whenever the social costs of having more government debt comove with the actual level of debt, or

in other words, when the social costs of having debt increase as debt increases, the optimal policy

rate τa becomes larger. This is the main difference relative to the case without aggregate shocks,

while without aggregate shocks what matters is the amount of excess debt, now what matters is

whether debt is relatively more costly in those periods where debt is large.

As done in Section 4, to gain more insights about what determines the optimal policy rate, I

decompose τa as follows, where I drop dependence on the state space for convenience

τa =
1

ζHtM
τ + Eτ

( representative agent︷ ︸︸ ︷
CovΓ

[
B, µ̃

]
+ CovΓ

[
B, (r − ρ)

A
B

Eg|Γ

[
uc(c, ℓ)

(
1 + Θ

)]]
− CovΓ

[
B, ẼB

]

+ CovΓ

[
B,

r − ρ

B
Covg|Γ

[
a, uc(c, ℓ)

(
1 + Θ

)]]
+ CovΓ

[
B, ζ̃HtM

B

]
︸ ︷︷ ︸

inequality concerns

)

where g|Γ is the distribution over the idiosyncratic states at a given aggregate state Γ, and where

Eg|Γ and Covg|Γ are, respectively, the expectation and covariance operator defined using this

distribution23.

The long-run optimal adjustment of public debt depends on various factors. As for the case

without aggregate shocks, I shall start by the contribution from the representative agent24.

Corollary 11. (Optimal Public Debt Adjustment in the RA limit) Is given by

τa =
1
Eτ

(
CovΓ

[
B, µ̃

]
+ CovΓ

[
B, (r − ρ)

A
B

(
uc(C, L)

(
1 + Θ

))]
− CovΓ

[
B, ẼB

])
.

Four terms are present in this formula. First, the social shadow cost of excess government debt,

interpreted as the negative consequences of crowding out of capital due to excess government debt,

matters. This formula shows that these costs matter to the extent they comove with the level of

government debt, that is, it only matters if the crowding out is aggravated whenever the economy

is in a period of high debt, that is, a recession and its aftermath.

Second, the optimal tax rate depends on the comovement of government debt and the capital

income gains of the median household. A useful approximation of the first covariance term is

1
B

CovΓ

[
B, (r − ρ)AEg|Γ

[
uc(c, ℓ)

(
1 + Θ

)]]

23 Formally, if g : R5 → R is the stochastic steady-state distribution function over (a, z, Γ) and gΓ is the stochastic
steady-state distribution function of Γ, the distribution over the idiosyncratic space (a, z) conditional on an aggregate
space Γ is gidio|Γ(a, z) = g(a,z,Γ)

gΓ(Γ)
for all Γ.

24 I assume to be such that ζHtM
τ + Eτ > 0.

21



highlighting that the countercyclicality of capital income gains from changing the interest rate due

to an increase in debt that contributes to increasing τa. In other words, if this particular social

benefit of having more debt is greater whenever debt is high — equivalently, output is low since

government debt is countercyclical — this term calls for a slower repayment of public debt.

Finally, the terms ẼB and Eτ appear. As said earlier, they represent the social cost of changing

the perceived laws of motion due to adjustments by the Ramsey planner in both the level of public

debt and the policy rate. Indeed, in the case where individuals do not form expectations about

the future, namely individuals are myopic, these terms disappear. The following corollary gives

the optimal policy in such scenario and show the quantitative relevance of these terms in the next

section.

Corollary 12. (Optimal Public Debt Adjustment with Myopic Individuals) Is given by

τa =
1

ζHtM
τ

(
CovΓ

[
B, (r − ρ)

A
B

Eg|Γ

[
uc(c, ℓ)

(
1 + Θ

)]]
+ CovΓ

[
B, µ̃

]

+CovΓ

[
B,

r − ρ

B
Covg|Γ

[
a, uc(c, ℓ)

(
1 + Θ

)]]
+ CovΓ

[
B, ζ̃HtM

B

])

Next, the optimal policy rate takes into account its effects over the cross-sectional distribution,

namely the inequality concerns. First, it depends negatively, as is the case of Proposition 6, on the

utility cost of increasing the policy rate for hand-to-mouth individuals.

Second, the same redistribution motive as in the case of no aggregate shock is present, albeit

now what matters is how this redistribution motive comoves with the level of government debt. To

see this consider the following approximation

CovΓ

[
B,

r − ρ

B
Covg|Γ

[
a, uc(c, ℓ)

(
1 + Θ

)]]
≈ 1

B
CovΓ

[
B, (r − ρ)Covg|Γ

[
a, uc(c, ℓ)

(
1 + Θ

)]]
.

In an economy in which the redistribution motive increases in absolute value during bad times,

something plausible since consumption over the business cycle for wealthy individuals fluctuates

less relative to wealth-poor individuals, this covariance will tend to be negative. Of course, these

conclusions might be affected by the comovement of the term Θ(a, z, Γ), whose effect remains a

quantitative question.

Finally, the comovement of the utility cost for hand-to-mouth of increasing the level of

government debt with the actual level of government debt also increases the optimal tax rate. The

interpretation is straightforward, if the utility cost of an extra unit of government debt for these

individuals is larger when there is more debt, the planner aims to avoid these situations, which in

turn pushes her to have a faster adjustment of public debt.

Both the utility costs experienced by hand-to-mouth households and the redistributive motive

are related to the inequality considerations. However, there is a major difference which is that
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the redistributive motive only matters to the extend the planner can commit to a future path for

government debt. Indeed, the redistribution motive, as well as the capital income gains discussed

above, emerge when public debt puts upward pressure to the interest rate.

Corollary 13. (Optimal Public Debt Adjustment with Discretion) Is given by

τa =
1

ζHtM
τ + Eτ

(
CovΓ

[
B, µ̃

]
+ CovΓ

[
B, ζ̃HtM

B

]
++CovΓ

[
B, ẼB

])

The relevant trade-offs reduces to the utility costs experienced by hand-to-mouth due to a

lower post-tax labor income, the bounded rationality terms (ẼB and Eτ) and the social cost of excess

demand of assets. All these social costs have contemporaneous effects on households: either by

decreasing the cash-on-hand of some individuals, or by crowding out capital, and hence, decreasing

wages.

6 Quantitative Assessment

In this section, I numerically solve the Ramsey planner introduced in Definition 8, which is a planner

that chooses the optimal speed of public debt adjustment in an environment with heterogeneous

agents and aggregate risk. The aim of this section is first to quantify the policy rate found in

Proposition 10, and second to explore its implications for the macroeconomic aggregates when the

economy faces a negative shock. In this section, I use a slightly different tax function, which is an

approximation of (4), the one that I have used to derive results. In the numerical application, I use

τt = τ̄ + τa log
(

Bt

B

)
≈ τ̄ +

τa

B

(
Bt − B

)
(30)

so that both expressions are, using a first-order Taylor approximation, the same up to rescaling by

the constant 1
B

the parameter that governs the speed of adjustment of public debt. The reason for

this choice is that, while (4) is suitable for deriving an explicit tax formula, the log specification —

which is also used in McKay and Reis (2016) — is better suited for numerical exercises.

6.1 Calibration

The goal of the calibration is to be consistent with state-of-the-art parametrizations of one-asset het-

erogeneous agent models with capital and bonds. It closely follows the “one-account heterogeneous-

agent model with high-liquidity” of Auclert et al. (2018). Table 1 summarizes the calibration.

Households. I assume a CRRA utility separable utility function between consumption and labor

of the form

u(c, ℓ) =
c1−σ

1 − σ
− Ψ

ℓ1+ν

1 + ν
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Description Parameter Value Target
Preferences
Discount rate (p.a.) ρ 0.065 Riskfree rate 5%
Intertemporal elasticity σ 1 Standard
Frisch elasticity labor supply ν 1 Standard

Household
Borrowing constraint a 0 Standard
Persistence earnings θz 0.0943 Persistence log-wages
Volatility earnings σz 0.2265 Volatility log-wages

Firms
Capital share α 0.3 Share labor 30%
Capital depreciation (p.a.) δ 0.09 K/Y = 2.26
Persistence TFP θZ 1 Autocorrelation TFP
Volatility TFP σZ 0.007 Volatility TFP

Government
Government spending G 0.2 G/Y = 20%
Government debt B 0.7 B/Y = 70%
Tax rate τ 33% Internally calibrated

Table 1. List of Calibrated Parameters

where in line with Kaplan et al. (2018) and Auclert et al. (2018), I assume an intertemporal elasticity

σ = 1 (that is, a log-utility specification for consumption), and a Frisch elasticity of labor supply

ν = 1, which is in the bounds of Chetty (2012)’s estimate. I use the parameter Ψ from the

disutility of labor to normalize steady-state output Y = 1. Next, I set the discount rate ρ to

target a steady-state risk-free annual rate r = 0.05, which captures the average combined real

return on capital and government bonds from 1969 to 2019. This requires ρ = 0.0658. As in

Auclert et al. (2018), I assume households cannot borrow, a common assumption in one-asset

models in which households can trade capital. I use Floden and Lindé (2001)’s estimates of the

US wage process to calibrate the parameters of the idiosyncratic shock. In discrete time, the

estimated persistence of the AR(1) process for wages is 0.91, whose continuous-time counterpart is

θz = − ln(0.91) = 0.0943. The estimated standard deviation is ς2 = 0.0426, which in continuous

time yields σz =
√

2θzς/(1 − e−2θz) = 0.2265.

Firms. I normalize the steady-state TFP level Z = 1. I set the labor share 1 − α = 0.706. Then, to

target a capital-to-income ratio of K/Y = 2.26, I set the annual rate of depreciation of capital to

δ = 0.096. For the evolution of TFP, I assume log-productivity is given by

d log(Zt) = −θz log(Zt) + σZdW̃t
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where W̃t is a Brownian motion. To target the quarterly autocorrelation and volatility of TFP

observed in the data (Ahn et al., 2018), it requires choosing an annual persistence θZ = 1 and annual

volatility σZ = 0.007.

Fiscal policy. At the steady-state, for government spending to GDP ratio, I target G/Y = 0.2; and

for debt to GDP ratio, I target B/Y = 0.7. These are standard values and are those used in Auclert

et al. (2018) and in Campos et al. (2024). The resulting marginal labor income tax is τ = 0.33.

Untargeted moments. The steady-state of the model manages to match correctly the assets to

pre-tax labor income A
wL = 4.2 form Kaplan and Violante (2022) and the share of hand-to-mouth

households that is equal to 30% (Kaplan et al., 2018).

6.2 Numerical Implementation

I solve the model numerically using the finite-difference method developed by Achdou et al. (2022).

To handle the high dimension state-space, I use the sparse grids tools developed by Schaab and

Zhang (2022). As Assumption 2 naturally suggests, I solve the stochastic steady state using the

Krusell and Smith (1998) algorithm. The algorithm produces a Den Haan (2010) error between the

perceived laws of motion and the simulated ones — the preferred accuracy metric in Ahn et al.

(2018) — of around 0.2, which is approximately the same as a baseline Krusell-Smith economy. In

Appendix B, I provide further details on the algorithm.

6.3 Optimal Public Debt Adjustment

The optimal tax rate in the model with heterogeneous agents and aggregate risk is τa = 5.8525.

Under the tax function in (30), the interpretation of the optimal tax is as follows: if the government

debt is 1% above the long-run target of 70% for debt-to-GDP, the labor income tax is 41% (0.33 +

5.85 ln(0.71/0.7) = 0.41). Instead, if public debt is at the long-run level, labor income tax equals

33%. This result can be interpreted as the model suggesting a high level of fiscal austerity whenever

public debt is high. During the first periods of high debt, the economy is still in a recession, and yet

optimal policy suggests that a large adjustment is needed. This value might seem unrealistically

high if being compared with the debt-to-GDP ratios seen nowadays, however, note that in my

simulations at the optimal policy, debt never reaches large levels given the large fiscal adjustment26.

25 I search for the optimal policy rate τa and check that it is an interior solution.
26 Real fiscal systems have other instruments to conduct large fiscal adjustments. For instance, from 2008-2014, all

four southern countries in Europe (Greece, Italy, Portugal, and Spain) increased their VAT taxes as one of the ways of
conducting the fiscal adjustment needed. These countries also introduced reforms in the labor market, the public sector,
the social security system, etc. By concentrating all the adjustments into one tool, I generate a disproportionally large
optimal labor income tax, but it allows me to identify the trade-offs determining the optimal response. Increasing the
number of instruments will plausibly dampen the optimal labor income tax rate, and it is left for future research.
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I compare the model with estimates from the data computed by Auclert and Rognlie (2018).

They estimate dBt = ρB(dBt + dGt) + εt, that is, a process for first differences of government debt

Bt. Their process also includes changes in government spending dGt and a shock εt. In the data,

they find an annual persistence of ρB = 0.93; whereas in my model, I find an estimated persistence

with simulated data at the optimum equal to ρsim
G = 0.91. My model suggests the government

should pay back its debt slightly faster than what it has done in the past years, or equivalently,

that government debt should be slightly less persistent. Reassuringly, the implied dynamics at the

optimal policy rate are very similar to those estimated from US data. These authors acknowledge

the uncertainty around this point estimate. Nonetheless, if I compare the implied persistence ρsim
G

with Galí et al. (2007)’s estimates of annual persistence of government debt transformed into first

differences, I obtain an annualized persistence of 0.903, which is again, very close to the optimal

one.

To put these numbers into perspective, I solve the representative agent limit of the model in

which aggregate uncertainty is present. The optimal fiscal adjustment is substantially lower as

it equals τa|RA = 0.54. This means that if the government debt is 1% above the long-run target

of 70% for debt-to-GDP, the labor income tax is 33.7% (0.33 + 0.54 ln(0.71/0.7) = 0.337), only

0.7 percentage points above the long-run tax. This small increase needs to be compared to the

8 percentage point increase that such excess debt generates in the full model that also includes

heterogeneous agents. The annual persistence of debt estimated from simulated data increases

until reaching ρ
sim|RA
G = 0.98. Without binding borrowing constraints, government debt is more

persistent, more than the estimates from the data and the estimates at the optimal policy when

including household heterogeneity.

To illustrate the role of anticipations about the future and find the optimal policy according

to Corollary 12, I solve for optimal policy by setting the perceived laws of motion µK(Γ) = 0 and

µB(Γ) = 0. With this specification, individuals expect the same prices in the next period. Once

the next period arrives, prices change excursively due to changes in the TFP. The optimal policy

becomes τa = 19.95, namely an almost complete stabilization of government debt. Whenever

a negative shock induces a public deficit and an increase in debt, the government heavily taxes

individuals to bring it back to the long-run level. The reason is that increasing taxes is socially

costly: individuals anticipate them and save in the present to insure themselves against tax hikes

in the future. However, the planner perceives it as socially desirable to have stable debt, which

requires rapidly addressing public deficits with sizable taxes. Under myopic households, the first

social cost disappears, making the optimal tax substantially larger than the one with individuals

who can forecast the future.

6.4 Optimal Response to a Negative TFP Shock

In Figure 1, I illustrate the IRFs of a negative TFP shock in the model with heterogeneous agents

and aggregate shocks (HA-AR) and in the model with a representative agents and aggregate shocks
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(RA-AR). Notice that in this exercise aggregate risk is relevant, each IRF is the average across 100

Monte Carlo simulations where I only negatively shock the innovation at period 0. The size of the

IRFs is normalized by the size of the (negative) shock.
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Figure 1. Simulated IRFs in the stochastic steady state for a negative TFP shock.

I start by the response in the full model, namely with heterogeneous agents and aggregate risk

(HA-AR). The response of macroeconomic aggregates is standard, the shock generates a decrease

in consumption, capital, and effective hours of labor. While labor hours quickly return to their

normal path, the impact of capital lasts for longer. In turn, this generates a decrease in output.

As mentioned earlier, I keep the level of government spending constant as I want to identify the

negative consequences of public debt, avoiding a response of government spending as a by-product

of the other shocks that would reassemble a government spending shock. The negative shock

causes the government spending to GDP ratio to increase. Because government spending is fixed,

the negative shock yields an increase in public deficit absorbed by issuing more government debt.

On impact, the interest rate decreases due to the low marginal productivity of capital, however,

quickly after, it increases as the excess demand for assets pushes the price upwards.

Does the government need to increase taxes in response to a negative shock? Under the

optimal adjustment rate, the deleverage of pubic debt is front-loaded as the bulk of the excess debt

is repaid in the first four years after the negative shock. Instead, consumption needs more than 20

years to fully recover. This fast adjustment of public debt is achieved via a high labor income tax

rate: a decrease in productivity that generates a 1% drop in aggregate consumption raises the tax
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rate on impact by 1.25%. If the repayment was slower (meaning a lower policy rate), we would

see a hump-shaped response to public debt.In this scenario, during the recession the tax would

not be able to stop the upward trend of debt, and it would require several periods for debt to start

decreasing. The shock fades out after 20 years, and after that public debt and the other aggregates

keep fluctuating around their mean. In particular, government debt will keep fluctuating over a

level B̄27.

The optimal response with a representative agent is markedly different. First, while the

government does increase the tax in response to an increase in public debt, the adjustment is much

more smoother. Indeed, labor income taxes do not deviate as much from the stochastic steady-state

value after a negative TFP shock. In turn, this generates a slower convergence of public debt with

respect to the HA-AR case, which can be better appreciated by looking at the persistence of debt

denoted ρ
sim|RA
G discussed in the previous subsection. Compared with the case with heterogeneous

agents, the crowding out of capital is reduced by one order of magnitude, assets drop by much less,

but the convergence is much slower, and consumption suffers from a more important drop. In sum,

these effects indicate the role of the utility losses suffered by hand-to-mouth agents as well as the

redistributive motive in Proposition 10 relative to Corollary 11.

6.5 Discussion

Lucas and Stokey (1983)’s result about tax-smoothing — the government uses public debt as an

insurance mechanism against unexpected shocks and smooths labor income taxes — fails to apply

here. As Figure 1 suggests, a utilitarian Ramsey planner temporarily disregards tax smoothing to

pay back a large amount of government debt. My Ramsey planner’s problem, since it does not

include the choice of long-run government debt, fails in being fully comparable with Lucas and

Stokey (1983) and Aiyagari et al. (2002). Nonetheless, the “Tax rate” panel in Figure 1 suggests

that the combination of aggregate risk and heterogeneous agents disproves the tax-smoothing

result as a sizeable fiscal response is optimal, and this is particular to the model where this two

characteristics are present.

The joint determination of optimal labor income taxes and public debt has also been studied

by Bhandari et al. (2017b). In an economy with aggregate risk and heterogeneous agents but

no binding borrowing constraints, that is, without an endogenous distribution over wealth and

income, they find that in the long run, the government pays back its debt. However, it does so

fairly slowly, with a half-life of the repayment of at least 250 years, depending on the version of the

model considered. It suggests that what matters — what makes the effect quantitatively large —

27 My computational procedure does not allow me to find the optimal deterministic steady-state level of public debt
around which debt fluctuates, but it only informs about the speed of size of the fiscal adjustment. Alternatively, I could
have used an “inverse optimal approach at the steady-state” LeGrand and Ragot (2023) in which I choose the social
weights (ω(a, z, Γ) in Section 5) that deliver B̄ as the optimal steady-state level of debt. Nevertheless, this approach is
unsatisfactory because the implied path of public debt with aggregate shocks may not be the optimal one, perhaps in the
presence of aggregate risk, it is optimal for debt to fluctuate around a different value of B̄.
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is that heterogeneous agents face aggregate risk and some of them cannot insure themselves by

saving more, as in my model there are binding borrowing constraints. Indeed, when agents do not

face these borrowing onstraints the fiscal adjustment is much smaller as depicted in Figure 1.

About fiscal adjustments, Angeletos et al. (2023b) argue that a delay in paying back debt

is optimal because of the persistence of the boom generated; fiscal adjustment is delayed, debt

returns to trend on its own and the required future tax hike vanishes. Their result is derived in a

model with uninsurable income risk but without aggregate risk. Once aggregate risk is present,

by delaying the fiscal adjustment, the economy may suffer from another negative shock while the

level of public debt remains high. Hence, it is no longer possible to wait for debt to be repaid on its

own. Again, this points out the importance of aggregate risk.

7 Conclusion

This paper studies the role of aggregate risk in determining the optimal fiscal adjustment whenever

there is excess of public debt using a heterogeneous-agent model with capital and aggregate shocks.

The trade-offs shaping the optimal policy rate consist on the comovements of public debt with:

(i) the presence of crowding out of capital, (ii) the public debt penalty, (iii) the utility costs for

hand-to-mouths, (iv) the gains from capital income, and (v) a redistribution motive. To study their

importance, I calibrate and numerically solve the model. I find the implied dynamics of public

debt adjustment at the optimal policy to be consistent with those observed in the US. I finish by

discussing some of the literature on optimal fiscal policy and argue that the combination of binding

constraints and aggregate risk invalidates the desirability of tax-smoothing: excess public debt

becomes too socially costly.
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APPENDIX

A Proofs

A.1 Proof of Proposition 5

I recall the Lagrangian (13), and I drop both time indices and the dependence on the state-space of

the economy, namely (a, z) for convenience. Now, I use the index to denote derivatives. It writes,

L =
∫ ∞

0
e−ρt

{ ∫∫ {
u(c, ℓ)g

+ ϕ

[
− ρV + u(c, ℓ) + Vt +AV

]

+ χ

[
uc(c, ℓ)− Va

]

+ ψ

[
uℓ(c, ℓ) + (1 − τ)wzVa

]

+ λ

[
− gt +A∗g

]}
dadz

+ θ

[
− Bt + rB + G − τwL

]

+ µ

[ ∫∫
agdadz − K − B

]}
dt

where τ = τ̄ + τa(B − B̄). I will first abstract from boundary conditions, and treat them formally

later using a “discretize-optimize” approach as in Dávila and Schaab (2023) González et al. (2024).

Integrating by parts, and setting ϕ(0) = θ(0) = 0 we get for all (a, z)

∫ ∞

0
e−ρtϕVtdt = ρ

∫ ∞

0
e−ρtϕVdt −

∫ ∞

0
e−ρtϕtVdt

∫ ∞

0
e−ρtλgtdt = ρ

∫ ∞

0
e−ρtλgdt −

∫ ∞

0
e−ρtλtgdt

∫ ∞

0
e−ρtθBtdt = ρ

∫ ∞

0
e−ρtθBdt −

∫ ∞

0
e−ρtθtBdt

Using the definition of the adjoint operator — for any smooth functions f , g, the adjoint operator

A∗ of A satisfies < A f , g >=< f ,A∗g >, where < ·, · > is the inner product — we get∫
λA∗gdadz =

∫
Aλgdadz and

∫
AVϕdadz =

∫
VA∗ϕdadz
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Finally, integrating by parts yields for all t∫
χVadadz = −

∫
χaVdadz and

∫
(1 − τ)wzψVadadz = −

∫
(1 − τ)wzψaVdadz

where I have abstracted, as mentioned earlier, from boundary conditions. Thus, the Lagrangian

rewrites

L =
∫ ∞

0
e−ρt

{ ∫∫ {[
u(c, ℓ) + µa

]
g

+ ϕu(c, ℓ) + VA∗ϕ − ϕtV

+ χuc(c, ℓ) + χaV

+ ψuℓ(c, ℓ)− ψa(1 − τ)wzV

+Aλg + λtg − ρλg

}
dadz

+ θ

[
(r − ρ)B + G − τwL

]
+ θtB

+ µ

[
− K − B

]}
dt

Employing techniques from calculus or variations, consider a perturbation indexed by α ∈ R, that

is, perturb a candidate solution (for example) of the function c in the direction c + αhc and so on for

the other variables. We have

L =
∫ ∞

0
e−ρt

{ ∫∫ {[
u(c + αhc, ℓ+ αhℓ) + µa

](
g + αhg

)
+ ϕu(c + αhc, ℓ+ αhℓ) +

(
V + αhV

)
A∗(α)ϕ − ϕt

(
V + αhV

)
+ χuc(c + αhc, ℓ+ αhℓ) + χa

(
V + αhV

)
+ ψuℓ(c + αhc, ℓ+ αhℓ)− ψa

(
1 − τ̄ −

(
τa + αhτ

)(
B + αhB − B̄

))(
w + αhw

)
z
(

V + αhV

)
+A(α)λ

(
g + αhg

)
+ λt(g + αhg

)
− ρλ(g + αhg

)}
dadz

+ θ

[(
r + αhr − ρ

)
(B + αhB

)
+ G −

(
τ̄ +

(
τa + αhτ

)(
B + αhB − B̄

))(
w + αhw

)
( ∫∫ (

ℓ+ αhℓ
)

z
(

g + αhg

)
dadz

)]
+ θt

(
B + αhB

)
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+ µ

[
− K − αhK − B − αhB

]}
dt

Differentiating and taking the limit as α → 0

0 = Lα =
∫ ∞

0
e−ρt

{ ∫∫ {[
uc(c, ℓ)hc + uℓ(c, ℓ)hℓ

]
g +

[
u(c, ℓ) + µa

]
hg

+ ϕ

[
uc(c, ℓ)hc + uℓ(c, ℓ)hℓ

]
+

[
d

dα
A∗(0)V +A∗hV

]
ϕ − ϕthV

+ χucc(c, ℓ)hc + χucℓ(c, ℓ)hℓ + χahV

+ ψuℓℓ(c, ℓ)hℓ + ψuℓc(c, ℓ)hc − ψa(1 − τ)wzhV − ψa

(
(B − B̄)hτ + τahB

)
wzV

− ψa(1 − τ)hwzV

+
d

dα
A(0)λg +Aλhg + λthg − ρλhg

}}
dadz

+ θ

[
hrB + (r − ρ)hB −

(
(B − B̄)hτ + τahB

)
wL − τw

( ∫∫
z(ghℓ + ℓhg)dadz

)]
+ θthB

+ µ

[
− hK − hB

]}
dt

where, for smooth functions f , g, we have

∫∫ d
dα

A(0) f gdadz =
∫∫ [

ahr −
(
(B − B̄)hτ + τahB

)
wℓ+ (1 − τ)hwzℓ+ (1 − τ)whℓ − hc

]
fagdadz

and it is important to notice that hτ, hB, and hK only depend on the period while the rest of the

perturbations are also state-dependent. Now I proceed to apply the fundamental lemma of calculus

of variation.

Consumption. Regrouping the terms that are multiplied by hc

0 = uc(c, ℓ)g + ϕuc(c, ℓ)− ϕVa + χucc(c, ℓ) + ψuℓc(c, ℓ)− λag

and dividing by g and using the FOC of the competitive equilibrium for consumption

0 = uc(c, ℓ)− λa − χ̃; with χ̃ = −χ

g
ucc(c, ℓ)− ψ

g
ucℓ(c, ℓ)
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Labor supply. Regrouping the terms that are multiplied by hℓ

0 = uℓ(c, ℓ)g + ϕuℓ(c, ℓ) + ϕ(1 − τ)wzVa + χucℓ(c, ℓ) + ψuℓℓ(c, ℓ) + (1 − τ)wλag − θτwzg

and dividing by g and using the FOC of the competitive equilibrium for the supply of labor

0 = uℓ(c, ℓ) + (1 − τ)wλa − ψ̃ − θτwz; with ψ̃ = −ψ

g
uℓℓ(c, ℓ)− χ

g
ucℓ(c, ℓ)

Lifetime utility. Regrouping the terms that are multiplied by hV

ϕt = A∗ϕ + χa − ψa(1 − τ)wz

Cross-sectional distribution. Regrouping the terms that are multiplied by hg

ρλ = u(c, ℓ) + µa − τwθℓ+Aλ + λt

Interest Rate. Regrouping the terms that are multiplied by hr

0 =
∫∫

a
[
ϕVa + λag

]
dadz + θB

Government debt. Regrouping the terms that are multiplied by hB

0 = −τaw
∫∫

ℓz(ϕVa + λag)dadz − τaw
∫∫

ψazVdadz − θτawL + τ(r − ρ)− θt − µ

and finally,

θt = τaw
∫∫ [

ℓz(ϕVa + λag) + ψazV
]
dadz + τaθwL + θ(ρ − r) + µ

Speed of adjustment. Regrouping the terms that are multiplied by hτ

0 = w(B − B̄)
∫∫ [

ℓz(ϕVa + λag) + ψazV
]
dadz + θ(B − B̄)wL

Accounting for boundary conditions, a “discretize-optimize” approach. The goal now is to

formally account for the boundary conditions, that is the fact that the planner cannot freely set

consumption for the contained individuals. Instead, she understands that she can only indirectly

affect it by changing the cash-on-hand via the parameters that depend on it.

Now (a, z) are discretized in a matrix in a scattered way, so that row i of the grid corresponds

to an individual with wealth ai and productivity zi; with grid size I, and step sizes da and dz. I

denote for convenience dx = dadz. Grid point i = 1 corresponds to the constrained individual,

which I assume to be at (a, z), it’s straightforward to extend to multiple values of z. The other
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continuous variable, time, take now the form of a grid denoted {tn}n, that has size N and time step

dt. For convenience, I index a variable xt(a, z) by xin, and the discretized Lagrangian writes

L(g0) =
N−1

∑
n=0

e−ρtn

{
I

∑
i=1

u(cin, ℓin)gindx

− ∑
i>1

ϕin − ϕin−1

dt
Vindx + ∑

i>1
ϕin

[
u(cin, ℓin) +AinVin

]
dx

+ ∑
i>1

χin

[
uc(cin, ℓin)−

(
∂aV

)
in

]
dx

+ ∑
i>1

ψin

[
uℓ(cin, ℓin) + (1 − τ)wz

(
∂aV

)
in

]
dx

+ ∑
i>1

λin − λin−1

dt
gindx − ∑

i>1
ρλingindx + ∑

i>1
λinA∗

ingindx

− µn

[
Kn + Bn

]
+

I

∑
i=1

µnaigindx

+
θn − θn−1

dt
Bn + θn

[
(rn − ρ)Bn + Gn − τwn

I

∑
i=1

ℓinzi

]}
dt.

As pointed out in Achdou et al. (2022), the domain of differentiation for the variable wealth a of

the KFE, the HJB, and therefore of the FOC uc(c, ℓ) = ∂aV, is (a, ∞). This is why the sum of i’s
starts at Ī + 1, and not at i = 1. Hence, the necessary conditions for consumption, labor supply,

lifetime utility, and cross-sectional distribution only hold in the interior. Having discretized the

state-space, now I optimize over rn, government debt Bn, and the policy rate τa
n . To do so, notice

that consumption for the constrained individual writes

c1n = rna1 + (1 − τ̄ − τa
n(Bn − B̄))wnz1ℓ1n

and the supply of labor is given by the intra-temporal substitution of consumption and labor.

Now I can finally provide the necessary conditions including the terms of the borrowing

constraint. Formally, I take the FOC directly using the discretized Lagrangian and later take the

limit to the continuous state-space

Interest Rate. We have

0 =
∫∫

a
[
ϕVa + λag

]
dadz + ζHtM

r + θB

where

ζHtM
r =

(
a + (1 − τ)wzℓr

)
uc(c, ℓ)gdadz + (1 − τ)wzℓruℓ(c, ℓ)gdadz (31)
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where c (resp. ℓ with derivative with respect to r denoted ℓr) denote consumption (resp. labor

supply) of the constrained individual, and where gdadz is the measure of individuals at the Dirac

mass point (a, z).

Government debt. We have

θt = τaw
∫∫

z
[
ℓ(ϕVa + λag) + ψaV

]
dadz + τaθwL + θ(ρ − r) + µ + ζHtM

B

where

ζHtM
B =

(
τawzℓ− (1 − τ)wzℓB

)
uc(c, ℓ)gdadz − (1 − τ)wzℓBuℓ(c, ℓ)gdadz (32)

Speed of adjustment. And finally, we have

0 = w(B − B̄)
∫∫

z
[
ℓ(ϕVa + λag) + ψaV

]
dadz + θ(B − B̄)wL + ζHtM

τ

where

ζHtM
τ =

(
(B − B̄)wzℓ− (1 − τ)wzℓτ

)
uc(c, ℓ)gdadz − (1 − τ)wzℓτuℓ(c, ℓ)gdadz (33)

which concludes the proof.

A.2 Proof of Proposition 6 and 7

Using

θt = τa
[

w
∫∫

z
[
ℓ(ϕVa + λag) + ψaV

]
dadz + θwL

]
+ θ(ρ − r) + µ + ζHtM

B

0 = (B − B̄)
[

w
∫∫

z
[
ℓ(ϕVa + λag) + ψaV

]
dadz + θwL

]
+ ζHtM

τ

we get

θt = −τa
[

ζHtM
τ

B − B̄

]
+ θ(ρ − r) + µ + ζHtM

B

and in the RA limit it reduces to θt = θ(ρ − r) + µ since ζHtM
τ = ζHtM

B = 0 as there is no hand-to-

mouth individuals at equilibrium. Furthermore, since ρ = r, in the RA limit we obtain θt = µ. Back

in the general case, rearranging,

τa =
B − B̄
ζHtM

τ

(
− θt + θ(ρ − r) + µ + ζHtM

B

)
.
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We can also use 0 =
∫∫

a
[
ϕVa + λag

]
dadz + θB, to get

τa =
B − B̄
ζHtM

τ

(
− θt −

ρ − r
B

∫∫
a
[
ϕVa + λag

]
dadz + µ + ζHtM

B

)
Moreover, since 0 = uc(c, ℓ)− λa − χ̃, then

τa =
B − B̄
ζHtM

τ

(
− θt −

ρ − r
B

∫∫
a
[
ϕuc(c, ℓ) + (uc(c, ℓ)− χ̃)g

]
dadz + µ + ζHtM

B

)

τa =
B − B̄
ζHtM

τ

(
− θt −

ρ − r
B

∫∫
auc(c, ℓ)

[
1 + Θ

]
gdadz + µ + ζHtM

B

)

where Θ = ϕ
g − χ̃

uc(c,ℓ) .

A.3 Proof of Proposition 9

Because this proof mimics the one for Proposition 5 but extends the aggregate state space, all the

derivations until using calculus of variation to derive the necessary conditions are exactly the same.

Therefore, I start by recalling the differentiated Lagrangian

0 = Lα =
∫ ∞

0
e−ρt

{ ∫∫∫ {{[
uc(c, ℓ)hc + uℓ(c, ℓ)hℓ

]
g +

[
u(c, ℓ) + µa

]
hg

+ ϕ

[
uc(c, ℓ)hc + uℓ(c, ℓ)hℓ

]
+

[
d

dα
A∗(0)V +A∗hV

]
ϕ − ϕthV

+ χucc(c, ℓ)hc + χucℓ(c, ℓ)hℓ + χahV

+ ψuℓℓ(c, ℓ)hℓ + ψuℓc(c, ℓ)hc − ψa(1 − τ)wzhV − ψa

(
(B − B̄)hτ + τahB

)
wzV

− ψa(1 − τ)hwzV

+
d

dα
A(0)λg +Aλhg + λthg − ρλhg

}}
dadz

+ θ

[
hrB + (r − ρ)hB −

(
(B − B̄)hτ + τahB

)
wL − τw

( ∫∫
z(ghℓ + ℓhg)dadz

)]
+ θthB

+ µ

[
− hK − hB

]}
dΓ

}
dt
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where, and here comes the main difference, for smooth functions f , g, we have

∫∫∫ d
dα

A(0) f gdadz =
∫∫∫ [

ahr −
(
(B − B̄)hτ + τahB

)
wℓ+ (1 − τ)hwzℓ+ (1 − τ)whℓ − hc

]
fagdadzdΓ

+
∫∫∫ [

hK∂KµK(Γ) + hB∂BµK(Γ) + hτ∂τµK(Γ)
]

fKgdadzdΓ

+
∫∫∫ [

hB∂BµB(Γ) + hK∂KµB(Γ) + hτ∂τµB(Γ)
]

fBgdadzdΓ.

The last two lines of the latter expression show only the first-order condition of government

debt and the speed of adjustment. The two conditions that change in a meaningful weight (that is,

something extra apart from including an extra variable in the state-space) are:

Government debt with Aggregate Shocks. Regrouping the terms that are multiplied by hB

0 = −τaw
∫∫

ℓz(ϕVa + λag)dadz − τaw
∫∫

ψazVdadz − θτawL + τ(r − ρ)− θt − µ + EB

where

EB(Γ) =
∫∫

∂BµB(Γ)ϕVBdadz +
∫∫

∂BµK(Γ)ϕVKdadz

+
∫∫

∂BµB(Γ)λBgdadz +
∫∫

∂BµK(Γ)λKgdadz (34)

and finally,

θt = τaw
∫∫ [

ℓz(ϕVa + λag) + ψazV
]
dadz + τaθwL + θ(ρ − r) + µ − EB − EB

Speed of adjustment with Aggregate Shocks. Regrouping the terms multiplied by hτ yields

0 =
∫

w(B − B̄)
∫∫ [

ℓz(ϕVa + λag) + ψazV
]
dadzdΓ +

∫
θ(B − B̄)wLdΓ + Eτ

where

Eτ =
∫∫∫

∂τµB(Γ)ϕVBdadzdΓ +
∫∫∫

∂τµK(Γ)ϕVKdadzdΓ

+
∫∫∫

∂τµB(Γ)λBgdadzdΓ +
∫∫∫

∂τµK(Γ)λKgdadzdΓ (35)

Accounting for boundary conditions, a “discretize-optimize” approach. Now (a, z, Γ) are dis-

cretized in a matrix in a scattered way, so that row i of the grid corresponds to an individual with

wealth ai, productivity zi, in a world with aggregate state Γi. The grid for Γ̄ has size I, and step sizes

da, dz and dΓ. I denote for convenience dx = dadzdΓ. Many different i lead to the same aggregate
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state, I introduce a mapping ϕ(i) that maps each row i to a subset {1, . . . , J} of aggregate states so

that there is no j ̸= j′ such that Γj = Γj′ . I denote the inverse of this function by Φ(j) and it equals all

the i’s that have aggregate state j associated with them. Finally, Φ(j|H) is the subset of i’s associated

with Γj that is hand-to-mouth, and its complement, the subset of unconstrained households, is

denoted Φ(j|R). I assume that the first Ī entries of the grid correspond to hand-t-mouth agents,

and the rest to unconstrained. The time grid, denoted {tn}n, has size N and time step dt. Indexing

a variable xt(a, z, Γ) by xin, the Lagrangian becomes

L(g0) =
N−1

∑
n=0

e−ρtn

{
∑

i
u(cin)gindx − ∑

i> Ī

ϕin − ϕin−1

dt
Vindx + ∑

i
ϕin

[
u(cin, ℓin) +AinVin

]
dx

+ ∑
i> Ī

χin

[
uc(cin, ℓin)−

(
∂aV

)
in

]
dx

+ ∑
i> Ī

ψin

[
uℓ(cin, ℓin)− (1 − τn)wϕ(i)nzi

(
∂aV

)
in

]
dx

+ ∑
i> Ī

λin − λin−1

dt
gindx − ∑

i> Ī

ρλingindx + ∑
i> Ī

λinA∗
ingindx

− ∑
j

µjn

[
Kjn + Bjn

]
dΓ + ∑

i
µϕ(i)naigindx

+ ∑
j

θjn − θjn−1

dt
BjndΓ

+ ∑
j

θjn

[
(rjn − ρ)Bjn + Gjn − τnwjnL

]
dΓ

}
dt.

Interest Rate. We have

0 =
∫∫

a
[
ϕVa + λag

]
dadz + ζHtM

r + θB

where

ζHtM
r =

(
a + (1 − τ)wzℓr

)
uc(c, ℓ)gdadz + (1 − τ)wzℓruℓ(c, ℓ)gdadz (36)

where c (resp. ℓ with derivative with respect to r denoted ℓr) denote consumption (resp. labor

supply) of the constrained individual, and where gdadz is the measure of individuals at the Dirac

mass point (a, z).

Government debt. We have

θt = τaw
∫∫

z
[
ℓ(ϕVa + λag) + ψaV

]
dadz + τaθwL + θ(ρ − r) + µ + ζHtM

B − EB
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where

ζHtM
B =

(
τawzℓ− (1 − τ)wzℓB

)
uc(c, ℓ)gdadz − (1 − τ)wzℓBuℓ(c, ℓ)gdadz (37)

Speed of adjustment. And finally, we have

0 =
∫

w(B − B̄)
∫∫

z
[
ℓ(ϕVa + λag) + ψaV

]
dadzdΓ +

∫
θ(B − B̄)wLdΓ + ζHtM

τ + Eτ

where

ζHtM
τ =

∫ (
(B − B̄)wzℓ− (1 − τ)wzℓτ

)
uc(c, ℓ)gdadzdΓ −

∫
(1 − τ)wzℓτuℓ(c, ℓ)gdadzdΓ (38)

which concludes the proof.

A.4 Proof of Proposition 10 and Corollaries 12, 11 and 13

Using

θt = τaw
∫∫

z
[
ℓ(ϕVa + λag) + ψaV

]
dadz + τaθwL + θ(ρ − r) + µ + ζHtM

B − EB

0 =
∫
(B − B̄)w

[ ∫∫
z
[
ℓ(ϕVa + λag) + ψaV

]
dadz + θL

]
dΓ + ζHtM

τ + Eτ

where the first line rewrites as

1
τa

(
θt − θ(ρ − r)− µ − ζHtM

B + EB

)
= w

[ ∫∫
z
[
ℓ(ϕVa + λag) + ψaV

]
dadz + θL

]
we get

0 =
∫
(B − B̄)

1
τa

(
θt − θ(ρ − r)− µ − ζHtM

B + EB

)
dΓ + ζHtM

τ + Eτ

which yields

τa =
1

ζHtM
τ + Eτ

∫
(B − B̄)

(
− θt + θ(ρ − r) + µ + ζHtM

B − EB

)
dΓ.

Using

θ = − 1
B

∫∫
auc(c, ℓ)

[
1 + Θ

]
gdadz

we finally get

τa =
1

ζHtM
τ + Eτ

∫
(B − B̄)

(
− θt −

ρ − r
B

∫∫
auc(c, ℓ)

[
1 + Θ

]
gdadz + µ + ζHtM

B − EB

)
dΓ,
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where in the long-run solution, θt = 0. In the main text, I use the decomposition

1
gΓ(Γ)

∫∫
auc(c, ℓ)

[
1 + Θ

]
gdadz = Eg|Γ

[
auc(c, ℓ)

[
1 + Θ

]]
,

where gΓ(Γ) =
∫∫

g(a, z, Γ)dadz and the expectation is taken over the pdf g conditional on an

aggregate state Γ. Then, I decompose

Eg|Γ

[
auc(c, ℓ)

[
1 + Θ

]]
= AEg|Γ

[
uc(c, ℓ)

[
1 + Θ

]]
+ Covg|Γ

[
a, uc(c, ℓ)

[
1 + Θ

]]
.

For Corollary 12, I set EB = Eτ = 0. For Corollary 11, I use g(a, z|Γ) → δ(a − A)δ(z −
zRA)gΓ(Γ), where zRA is the single level of labor productivity in the RA case and δ(·) is the delta

function. As a consequence, the covariance in the latter expression equals zero and the expectation

tends to uc(C, L)(1 + Θ). Corollary 13 follows from setting θ = 0, which is, as discussed in Dávila

and Schaab (2023), the continuous time counterpart of optimal discretion policy.

B Numerical Implementation

B.1 Step 1: Deterministic steady state

The set of optimality conditions in the deterministic competitive equilibrium are

ρv(a, z) = u(c, ℓ) + ∂av(a, z)s(a, z) + ∂zv(a, z)θz + ∂zzv(a, z)
σ2

z
2

; a ≥ a

c = (∂cu)−1
(

∂aV
)

& ℓ = (∂ℓu)−1
(
(1 − τ)wz∂aV

)
0 = A∗g(a, z)

w = (1 − α)KαL−α

r = αKα−1L1−α − δ

K + B =
∫ ∞

0
ag(a, z)dadz = A

where s(a, z) = (1 − τ)wzℓ + ra − c is the optimal saving policy function and the HJB is only

satisfied in the interior space. As detailed in Achdou et al. (2022), this system of partial differetial

equations can be discretized as

ρv = u(c, l) + Av; c = (uc)
−1
(

DaV
)

& l = (uℓ)
−1
(
(1 − τ)wzDaV

)
0 = A′g

p = [w, r] = F(g)
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where v is the discrete counterpart of v, and likewise for c, l and g. The finite-difference matrix Da

discretizes the derivative with respect to wealth a. The discretization of the infinitessimal generator

is denoted A, and the one of its adjoint corresponds to the transpose. The vector of prices p solves

a fix point problem that ensures market clearing for capital and labor holds given by F(·). I use the

deterministic steady-state to calibrate the model as described in Section 6.1 and to initialize the

algorithm for the stochastic steady-state explained below.

B.2 Step 2: Stochastic Steady State

The set of optimality conditions in the stochastic competitive equilibrium are

ρv(a, z, Γ) = u(c, ℓ) + ∂av(a, z, Γ)s(a, z, Γ) + ∂zv(a, z, Γ)θz + ∂zzv(a, z, Γ)
σ2

z
2

+ ∂Γv(a, z, Γ)µ(Γ); a ≥ a

0 = A∗g(a, z, Γ)

w = (1 − α)KαL−α

r = αKα−1L1−α − δ

K + B =
∫ ∞

0
ag(a, z, Γ)dadz = A; ∀Γ

and this can be discretized as in Step 1, albeit now the state space includes Γ and the perceived

laws of motion summarized into µ(Γ).

The algorithm follows the one of Achdou et al. (2022) extended as in Fernández-Villaverde

et al. (2023) to include aggregate risk as in Krusell and Smith (1998) and it is based on the finite

difference method (LeVeque, 2007). To speed-up computations, I use sparse grids, instead of dense

grids (used in Achdou et al. (2022) and Fernández-Villaverde et al. (2023)) with the tools developed

by Schaab and Zhang (2022).

Algorithm: 1) Choose a PLM parametrized by weights (βℓ
i )i. 2) Given µ, solve the HJB. 3) Simulate

a realization of the TFP sequence {Zt}t. 4) Given the simulated path of TFP {Zt}t, solve the KF

equation and obtain gt(a, z). Use it to get aggregate capital Kt and government debt Bt. 5) Run an

OLS regression28 where the regressor is the simulated path {Γt}t and the response variable is dKt

and dBt. With this, I update the weights βℓ+1 = βℓ. If the weights have converged, I stop, otherwise

I go back to step 2.

28 Fernández-Villaverde et al. (2023) uses a neural network. Since the quasi-aggregation result holds in this model,
there is no need for using a more perceived linear function than a liner one.
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B.3 Step 3: Find Optimal Policy Rate τa

The previous step computes the stochastic steady-state. Using Monte Carlo simulations, I compute

welfare W . Then, I search for the optimal τa, that is, the one that maximizes W subject to the

implementability conditions.
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