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1 Introduction

Traditionally, business cycles theories have dismiss the possibility that microeconomic shocks may originate

aggregate fluctuations due to a “diversification” argument (Lucas, 1977). Gabaix (2011) seminal work chal-

lenges the convention by introducing the “granular” hypothesis: in the presence of significant heterogeneity

at the micro level, the behavior of macroeconomic aggregates is attributable to the incompressible “grains”

of economic activity, the large firms.1 In this view, idiosyncratic shocks to the granular firms play a crucial

role in shaping aggregate fluctuations. And yet, we lack a framework that provides a theoretically founded

method for identifying the number of granular firms that populate a granular economy.

The first attempt to quantify the granular size of the economy (i.e., the number of granular firms) is

made by Blanco-Arroyo et al. (2018) empirical work, who find that the contribution of idiosyncratic shocks

to gross domestic product (GDP) fluctuations increases rapidly when the very top firms are taken into

account and an almost steady value from a given number of firms onwards. They refer to this behavior as

“granular curve”.2 The granular curve clearly shows two well differentiated regimes: the granular regime,

which is composed of a small number of large firms whose idiosyncratic perturbations can lead to aggregate

fluctuations, and the atomistic regime, which is composed of those firms whose effect on the aggregate is

negligible. Blanco-Arroyo et al. (2018) propose an empirical method to estimate the granular size based on

replacing large firms by smaller ones and comparing the resulting granular curve with the counterfactual case

in which all firms are of equal size. The granular size is then determined by the number of large firms that,

once removed, cause the empirical curve to converge to the counterfactual case. However, this procedure

seems to be too conservative, as the convergence point is much larger than point that visually represents the

change of regime in the granular curve.

This paper seeks to shed light on the determinants of the granular curve behavior and to quantify the

granular size of a granular economy more precisely. Building on the models developed by Gabaix (2009a) and

Carvalho and Gabaix (2013), we setup a conceptual framework that traces back the volatility of GDP growth

to large firms’ idiosyncratic shocks. We show that, when the distribution of firm size is power law (see, e.g.,

Axtell (2001), Luttmer (2007), di Giovanni and Levchenko (2013)) and the firms’ idiosyncratic volatility

depends on size as a power law (see, e.g., Stanley et al. (1996), Koren and Tenreyro (2013), Yeh (2017)),

GDP fluctuations are shaped by five parameters that capture the large firms dynamics: (i) productivity

multiplier, (ii) Domar weight (Domar, 1961) of the largest firm, (iii) volatility of the largest firm, (iv) tail

index of firm size distribution, and (v) size-volatility elasticity.

Theoretically, our framework provides three key results. First, the largest firm contains a great deal of

information on the characteristics of the economy and plays a crucial role in driving aggregate fluctuations.

This result is in line with Carvalho and Grassi (2019), who develop a heterogeneous firm dynamics setup in

which aggregate fluctuations are caused by firm-level disturbances alone and conclude that business cycles

have a “small sample” origin.

Second, the granular contribution to aggregate fluctuations is bounded. When the firm size distribution

is power law, the contribution of idiosyncratic shocks to aggregate fluctuations exhibits an asymptotic value.

This finding is in line with Yeh (2021), who explores the effect the contribution of idiosyncratic shocks

1Recent contributions that also seek to understand the microeconomic underpinnings of aggregate fluctuations are Acemoglu
et al. (2012), di Giovanni and Levchenko (2012), Carvalho and Gabaix (2013), di Giovanni et al. (2014), ?), Baqaee (2018),
Baqaee and Farhi (2019), Carvalho and Grassi (2019).

2This type of behavior has also been documented in Brazil (Silva and Da Silva, 2020) and Kazakhstan (Konings et al., 2021).
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to aggregate fluctuations when including the size-volatility relationship. The fact that exists a maximum

contribution leaves room to traditional alternative factors, such as oil and monetary policy shocks, and am-

plification mechanism, such as “cascade effects” propagated throughout the input-output network (Acemoglu

et al., 2012).

Third, the effect of the size-volatility relationship in shaping aggregate fluctuations is non-negligible.

The literature that studies the granular origins of aggregate fluctuations has typically downplayed the effect

of the size-volatility relationship by arguing that the estimates come from biased and non-representative

samples (Gabaix, 2011).3 Recently, Yeh (2021) estimates the relationship using the universe of U.S. firms

and concludes that it is statistically different from zero even when taking the large firms only. We show it is

incompatible to assume that the weak form of Gibrat (1931) law for volatilities holds and use the volatility

of the largest firms (e.g., Gabaix (2011), Carvalho and Grassi (2019)) and that changes in the size-volatility

relationship have greater impact on aggregate fluctuations than tail index changes, which have been the

main object of study.

We then employ our setup to study the granular curve behavior observed in the data. As in Blanco-

Arroyo et al. (2018), we focus on the top 1000 Spanish firms. The estimation of the parameters support

the hypotheses on which it is based: the distribution of firm size and the size-volatility relationship follow a

power law behavior.

Empirically, we show that the granular curve is well characterized by our framework and find that the

average maximum contribution of top Spanish firms’s idiosyncratic shocks to the GDP fluctuations is 23%.

This estimate is in line with previous empirical estimations that are purely econometric (see, e.g., Gabaix

(2011), Blanco-Arroyo et al. (2018), Fornaro and Luomaranta (2018), Miranda-Pinto and Shen (2019), Silva

and Da Silva (2020)). Then, we propose a set of measures that allow to quantify the granular size of the

economy more precisely than the empirical method initially proposed by Blanco-Arroyo et al. (2018), as the

estimated size is closer to the point that visually represents the change from the granular to the atomistic

regime than the empirical method initially proposed. In particularly, we estimate that the granular size of

the Spanish economy is approximately 50 firms.

The results are robust to changes in the number of firms and to time-varying parameters. Our baseline

estimation focuses on the largest 1000 firms and considers the entire period available. In an alternative

approach, we increase the number of firms to 2500 in steps of 500 and find that our framework continues

to characterize the empirical granular curve and the calibrated number of firms remains in the region that

we visually identify as the change of regime. We also explore the granular curve behavior in smaller time

windows. After calibrating the volatility of the largest firm, we show that the framework provides a good

characterization of the changes observed in the empirical granular curve through the business cycle. Finally,

we find that the granular size exhibits a cyclical behavior: the number of firms whose idiosyncratic shocks

have an impact on the aggregate grows in expansion phases and shrinks in recession phases.

Related literature Our paper draws on, and contributes to, two strands of literature: the granular

origins of aggregate fluctuations and the empirical industrial dynamics literature. Our conceptual framework

3This critique stems from the fact that the estimation has typically been carried out using firms in Compustat database.
As argued Gabaix (2011), Compustat only comprises large traded firms that are expected to be more volatile than non-traded
firms, as small volatile firms are more prone to seek outside equity financing, while large firms are in any case very likely to be
listed in the stock market.
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sheds light on the components that drive Gabaix (2011) “granular residual” and, hence, relates to the

recent empirical literature that investigates the proportion of aggregate shocks that can be accounted for by

idiosyncratic to the large firms (see, e.g., Gabaix (2011), di Giovanni et al. (2014), Stella (2015), Magerman

et al. (2016), Yeh (2017)).4 It also relates to the scarce theoretical literature that studies how large firms

dynamics shape aggregate fluctuations (di Giovanni and Levchenko, 2012, Carvalho and Grassi, 2019, Daniele

and Stüber, 2020, Gaubert and Itskhoki, 2021). Although, unlike the literature, our framework takes the

firm size distribution and the size-volatility relationship as exogenously given.

This paper is also related to the empirical industrial dynamics literature that studies the firm size distri-

bution (see, e.g., Axtell (2001), Gaffeo et al. (2003), Fujiwara et al. (2004), Luttmer (2007), di Giovanni and

Levchenko (2013)) and the size-volatility relationship (e.g., Stanley et al. (1996), Lee et al. (1998), Sutton

(2002), Koren and Tenreyro (2013), Calvino et al. (2018), Yeh (2021)). In line with the bulk of the recent

literature, we find that the upper tail of the firm size distribution follows a power law with exponent larger

than one and that the weak form of Gibrat (1931) law for volatilities, typically assumed in the granular

literature, does not hold for the largest firms in the economy.

Outline The remainder of this paper is organized as follows. Section 2 discusses the conceptual framework

that traces back the origins of business cycles fluctuations to large firm’s dynamics. Section 3 presents

the data and estimates the variables that constitute our model. Section 4 characterizes the behavior of the

empirical contribution of idiosyncratic shocks to large firms to aggregate fluctuations, quantifies the granular

size of the economy and explores its cyclical behavior. Section 5 concludes. Derivations and robustness checks

can be found in the Appendix.

2 Conceptual framework and motivation

This section builds on the models develop by Gabaix (2009a) and Carvalho and Gabaix (2013) to shed light

on how idiosyncratic firm shocks shape aggregate fluctuations. We follow the literature and assume that the

upper tail of the firm size distribution and the size-volatility relationship follow a power law. Under these

assumptions, GDP growth volatility is driven by five components: (i) productivity multiplier, (ii) “Domar”

weight of the largest firm, (iii) volatility of the largest firm, (iv) tail index of firm size distribution, and

(v) size-volatility elasticity. Furthermore, changes in the size-volatility elasticity have a larger impact on

aggregate volatility than changes in the tail index.

2.1 Conceptual framework

Consider an economy populated by n competitive firms that produce intermediate and final goods using

capital, labor and intermediate inputs supplied from one another. According to Hulten (1978), after a

Hicks-neutral idiosyncratic productivity shock εi = dAi/Ai to firm i, the shock to aggregate total factor

productivity (TFP) Λ is

dΛ

Λ
=

n∑
i=1

Si

Y
εi, (1)

4Previous literature that seeks to understand the microeconomic underpinnings of aggregate fluctuations includes Jovanovic
(1987), Durlauf (1993), Bak et al. (1993), Nirei (2006).
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where Si is firm i’s value of sales (gross output) and Y is GDP (aggregate value added). Si/Y is the so-called

“Domar” weight (Domar, 1961). The sum of the Domar weights in (1) can be greater than one. This reflects

the fact that the change in factor efficiency creates extra output, which serves to increase final demand and

intermediate inputs—see Carvalho and Gabaix (2013) for an intuition.5 The weighted sum of idiosyncratic

productivity shocks is none other than Gabaix (2011) “granular residual” (see Section 4.1).

Gabaix (2009a) and Carvalho and Gabaix (2013) show that, in absence of other disturbances, GDP

growth dY/Y is proportional to TFP growth dΛ/Λ: dY/Y = µdΛ/Λ, for some productivity multiplier

µ ≥ 1. Thus, GDP growth is equal to

dY

Y
= µ

n∑
i=1

Si

Y
εi. (2)

Assume that productivity shocks are uncorrelated across firms (i.e., cov (εi, εi) = 0 ∀i) and firm i’s has

a variance of shocks σi = var (εi).
6 Then, we have that the volatility of GDP growth is

σY = µ

√√√√ n∑
i=1

(
Si

Y

)2

σ2
i . (3)

The square root of the weighted sum is Gabaix (2011) “granular” volatility, Carvalho and Gabaix (2013)

“fundamental” volatility and di Giovanni et al. (2014) “direct effect”.

Gabaix (2011) seminal work introduces the “granular” hypothesis: in the presence of significant hetero-

geneity at the firm-level, economic fluctuations are attributable to the incompressible “grains” of economic

activity, the large firms. The intuition is as follows. When the distribution of firm size in Equation (3) is

sufficiently fat-tailed, idiosyncratic shocks to the granular firms do not die out in the aggregate, because they

do not cancel out with shocks to smaller firms. Thus, the origins of aggregate fluctuations can be traced

back to the dynamics of the granular firms.

Our first goal is to shed light on the industrial dynamics factors that drive the volatility of GDP growth.

To this end, we first study the distribution of firm size—measured by the value of sales—and then the

volatility of idiosyncratic productivity shocks.

2.2 Firms size distribution

A plethora of empirical evidence finds that the the entire firm size distribution, or at least its upper tail, is

well approximated by a power law (see, e.g., Axtell (2001), Fujiwara et al. (2004), Luttmer (2007), di Giovanni

and Levchenko (2013), among many others).7,8 Given our focus on the large firms, the evidence put forth

by the literature in favor of the power law distribution makes this a natural baseline to consider. Therefore,

5Hulten (1978) first-order approximation for frictionless, efficient economies has recently been extended by Baqaee and Farhi
(2019, 2020) to study the role played by second-order effects, such as complementarity, substitutability, returns to scale, factor
reallocation, and network structure.

6Throughout this section, we drop the time subscript for the sake of simplicity.
7See Gabaix (2009b) for a review of power laws in economics and finance.
8Gibrat (1931) and the literature that followed (see Sutton (1997) for a review) describe the firm size distribution by a

lognormal. Recent studies using census data conclude that the lognormal behavior emerges in non-representative samples
(Axtell, 2001).
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we assume that the counter cumulative distribution function (CCDF) of sales S is characterized by

P (firms > Si) =

(
Smin

Si

)ζ

, (4)

for Si > S
1/ζ
min, with ζ ∈ [1, 2). The CCDF (4) corresponds to a density p (Si) = ζSζ

minS
−(ζ+1)
i . We introduce

introduce the cut-off Smin to account for the fact that only the upper tail of the sales distribution could

display a power-law behavior (Fujiwara et al., 2004). We bound the tail index ζ in the range [1, 2) to ensure

that the distribution is fat-tailed and, hence, the economy is granular. Traditionally, business cycle theories

have discarded the possibility that aggregate fluctuations may originate from microeconomic shocks to firms

due to a “diversification argument” (Lucas, 1977). In particular, in an economy populated by a large number

n of firms hit by independent shocks, the law of large numbers applies and, hence, GDP volatility would

be roughly proportional to 1/
√
n—a negligible effect. As shown by Gabaix (2011), this would be the case

if ζ ≥ 2. However, when ζ lies in the range [1, 2), as estimated by the literature above, the law of large

numbers does not apply and GDP volatility decays much slower. For instance, when ζ = 1, known as Zipf’s

law (Zipf, 1949), the rate of decay is 1/ lnn. Thus, shocks to individual large firms may translate into

aggregate fluctuations.

2.3 Size-volatility relationship

The works of Meyer and Kuh (1957) and Hymer and Pashigian (1962) are the first to document the negative

relationship between firm’s volatility, measured by the standard deviation of firm’s sales growth rate, and its

size, measured by the average value of sales. Additional contributions find that this relationship is described

by a power law (see, e.g., Stanley et al. (1996), Lee et al. (1998), Sutton (2002), Koren and Tenreyro (2013),

Calvino et al. (2018), Yeh (2021)). We follow the literature and assume that the power-law behavior also

holds for the relationship between size and volatility of shocks. Thus, the relationship between the volatility

of the idiosyncratic productivity shock σi and the value of sales S is described by the law

σi (S) = σmin

(
Smin

Si

)α

, (5)

with α ∈ [0, 1/2]. As in Equation (4), we introduce the cut-off Smin and its corresponding volatility σmin.

The intuition typically provided to explain the limiting cases α = 0 and α = 1/2 is based on a diversification

argument. As argued by Amaral et al. (1997), in a firm made up of many units, which are of identical

size and grow independently of one another, fluctuations as a function of size decay as a power law with

an exponent α = 1/2 because the law of large numbers applies. On the contrary, if there are very strong

correlations between the units, the growth dynamics are indistinguishable from the dynamics of structureless

organizations and, hence, α = 0. The latter is the case predicted by Gibrat (1931) weak law, namely, there is

no size dependence of σ. Thus, the average volatility is well captured the volatility of all firms (i.e., σi = σ ∀i,
where σ is the average volatility).

The literature above estimates α between the two limiting cases even for large firms.9 The most common

9Some exceptions are Hall (1987) and Haltiwanger et al. (2013), who find that Gibrat’s law holds for large firms, as deviations
observed in the data are attributable to the dynamics of small entrants. Yeh (2021) estimates the relationship using the universe
of U.S. firms and finds a strong size-variance relationship even when excluding entrant firms.
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mechanisms proposed to explain the size-volatility relationship are based on output (Klette and Kortum,

2004) and establishment (Foster et al., 2001, 2006) diversification. Recently, Yeh (2017) rules out these

mechanisms and concludes that large firms face smaller price elasticities and therefore respond less to a

given-sized productivity shock than small firms do, as implied by Decker et al. (2020). Despite the lack of

consensus, it is important to emphasize that our results do not hinge on a particular microfoundation.

2.4 Aggregate fluctuations

Proposition 1 (GDP fluctuations). If the firm size distribution and the relationship between size and

volatility are power-law, then GDP fluctuations have the following form. If ζ ′ ̸= 1,

σY = µ
Smax

Y
σmax

{
2

2− ζ ′

[
1− Γ (2/ζ ′)n1−2/ζ′

]}1/2

, (6)

where Smax/Y and σmax are, respectively, the Domar weight and volatility of the largest firm, Γ (·) is the

Gamma function, n is the number of firms that populate the economy and the tail index ζ ′ ≡ ζ/ (1− α)

consists in the tail index of the firm size distribution ζ and the size-volatility elasticity α. If ζ ′ = 1,

σY = µ
Smax

Y
σ

π√
6
, (7)

where σ is a representative volatility.

Proof. See Appendix A.

According to Equation (7), when the firm size distribution is Zipf (1949) (namely, the tail index ζ is

equal to 1) and the weak form of Gibrat (1931) law for variances holds (namely, the elasticity α is equal to

0), the volatility of GDP growth caused by idiosyncratic shocks alone is determined by the following firm

dynamics variables: productivity multiplier, Domar weight of the largest firm and representative volatility.

On the other hand, when deviations from Zipf law (i.e., ζ ∈
(
1, 2
)
) and/or Gibrat law (i.e., α ∈

(
0, 1/2

]
)

exist, Equation (6) shows that the volatility of GDP growth is driven instead by the following variables:

productivity multiplier, Domar weight and volatility of the largest firm, number of firms in the economy, tail

index and size-volatility elasticity.

We follow Gabaix (2011) and quantify the contribution of idiosyncratic shocks to the volatility of GDP

growth using the R2 statistic. If ζ ′ ̸= 1, then

R2 = µ2

(
Smax

Y

)2(
σmax

σy

)2
2

2− ζ ′

[
1− Γ (2/ζ ′)n1−2/ζ′

]
. (8)

Given the large number of firms that populate an economy, the contribution exhibits an upper bound:

A = µ2

(
Smax

Y

)2(
σmax

σY

)2
2

2− ζ ′
(9)

According to Equation (9), A increases when any of the following changes take place: the share of economic

activity commanded by the largest firm increases, the idiosyncratic volatility of the largest firm with respect
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to GDP volatility increases, the firm size distribution becomes more homogeneous (i.e., ζ increases) and the

elasticity of volatility to size (i.e., α increases). Note that changes in ζ impact on Smax and, in turn, on

σmax. Appendix B discusses how they are related.

If ζ ′ = 1, then the contribution is

R2 = µ2

(
Smax

Y

)2(
σ

σY

)2
π2

6
, (10)

which coincides with the asymptotic contribution (i.e., R2 = A). Equation (10) represents the maximum

contribution of idiosyncratic shocks to GDP volatility because the size of the largest firm in a Zipf distribution

is larger than in a power law with tail index greater than 1 (Newman, 2005) and the average volatility is

larger than the volatility of the largest firm (see, e.g., Comin and Philippon (2005), Comin and Mulani

(2006)).

As mentioned above, the literature (and also our estimates in Section 3) shows that there are deviations

from Zipf and Gibrat laws in data. Thus, throughout this paper, we characterize GDP volatility using Equa-

tion (6). Interestingly, this characterization suggests to channels through which the contribution decreases:

sizes become more homogeneous and volatility is less elastic to changes in size. To which of the two channels

the contribution is more sensitive is answered by the following proposition.

Proposition 2. Let δ be deviations from Zipf’s law baseline case, i.e., tail index of the firm size distribution

is ζ = 1+ δ. Then, the excess of sensitivity of the contribution to changes in the size-volatility elasticity with

respect to changes in the tail index is
∂R2/∂α

∂R2/∂δ
= ζ ′ ≥ 1. (11)

Proof. See Appendix B.

The role of the size-volatility relationship in shaping aggregate fluctuations has been omitted in the

granularity literature, as leading modeling assumption is that Gibrat’s law holds (Gabaix, 2011, Carvalho

and Grassi, 2019). Equation (11) extends Yeh (2021) results by showing that deviations from Gibrat’s law,

not only attenuate significantly the impact of the granular contribution, but also that they play an even

more important role than changes in the cross-sectional dispersion in firm size, which is the main object of

study in the literature.

3 Data and measurement

In this section, we present the data set on which the results of this work are based and the procedure

followed to estimate the parameters that drive aggregate volatility. Our findings are as follows. First, the

time average aggregate productivity multiplier is well approximated by its micro-founded version. Second,

the Domar weight of the largest has remained rather stable through time. Third, in line with the bulk of

the literature presented above, the upper tail of the firm size distribution is well characterized by a power

law. Fourth, the size-volatility relationship estimated for the top 1000 firms follows a power law.
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3.1 Data and summary statistics

Firm-level data come from SABI (Sistema de Análisis de Balances Ibéricos) database. The database is

compiled by Bureau Van Dijk Electronic Publishing (BvD). SABI includes information on both listed and

unlisted Spanish firms collected from various sources, such as national registers and annual reports. The

fact that the data set provides information on unlisted firms is a crucial to avoid strong selection bias,

as some of the largest Spanish firms are privately held. The main variables used in the analysis are net

sales and number of employees for each firm. The time period is 1994-2018. During this lapse of time, the

Spanish economy experienced a rapid economic growth, followed by a double recession (2008:II-2009:IV and

2010IV-2013:II).10,11

Given our focus on large firm dynamics, we build our dataset using the largest 200,000 Spanish firms

in SABI. We attenuate the impact of exogenous shocks by excluding those firms that are engaged in oil,

oil-related and energy activities because their sales come mostly from worldwide commodity prices, rather

than real productivity shocks. We also exclude financial and public firms because their sales do not mesh

well with the meaning used.12 Recently, Cravino and Levchenko (2017) and di Giovanni et al. (2018, 2020)

find evidence suggesting that foreign shocks are transmitted to the domestic economy through the largest

firms and its affiliates. We mitigate the impact of foreign shocks by restricting the sample to those firms

whose “global ultimate owner” is based in Spain.13 We use unconsolidated sales denominated in euros, since

sales that are consolidated across the multiple firms that comprise the corporation overestimate the impact

of multinational firms and do not provide a reliable picture of the evolution of large firms (Gutiérrez and

Philippon, 2019).14 The resulting sample comprises the top 75,000 Spanish firms.

SABI, as well as other BvD products,15 has a low coverage for years previous to 1995 and a reporting lag

of roughly two years. This particularly affects the years 1994 and 2018 in our sample. We try to overcome

these limitations by interpolating missing values with a maximum gap of two consecutive periods. This

procedure does not change our conclusions and allows us to increase the representativeness of the sample

substantially.16

The contant GDP expressed in 2015 euros and GDP deflator come from the OECD’s National Accounts

Statistics (SNA) database (OECD, 2020a). GDP per capita is calculated using total population coming from

OECD’s SNA database (OECD, 2020b). Total factor productivity (index 100 in 2015) is obtained from the

Bank of Spain.17

Table 1 presents summary statistics for firm-level growth rates for the whole sample. The average growth

10See Fernandez-Villaverde et al. (2013) and Royo (2013), respectively, for a detailed explanation of the causes and conse-
quences of the economic boom in Spain.

11Recession dates are taken from Asociación Española de Economı́a (AEE).
12Firms are filtered our using the four-digit SIC primary code. See Appendix C in Gabaix (2011).
13A more suitable approach would be to retain those firms whose headquarters are located in Spain. Unfortunately, SABI

does not provide this information. We use the global ultimate owner to identify whether the firm is a parent or an affiliate.
In the case of individuals and families, the country reported is the country of residence. In the case of firms, it is the country
where the firm is based.

14In particular, we downloaded companies with unconsolidated accounts only (consolidation code U1) and companies that
present both consolidated and unconsolidated accounts (consolidation code C2/U2).

15Kalemli-Ozcan et al. (2023) discuss in detail how to use ORBIS and AMADEUS (the Global and European supersets of
SABI, repectively) to construct representative firm-level datasets.

16Figure A.3 shows the number of firms affected by the linear interpolation procedure through time and the number of firms
with valid observations.

17The time series can be found in the summary indicators table “Structural Indicators of the Spanish economy and of the
European Union” (Table 1.4).
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Table 1: Summary statistics.

Weight Sales Employees Productivity

Average aggregate growth rate 0.065 0.063 0.069
Average individual growth rate 0.126 0.074 0.030

Standard deviation of
growth rate

Sample 0.367 0.415 0.323 0.429
0 - 20 size percentile 1.39×10−6 0.694 0.427 0.681
21 - 40 size percentile 0.001 0.328 0.307 0.388
41 - 60 size percentile 0.008 0.352 0.299 0.387
61 - 80 size percentile 0.040 0.306 0.252 0.321
81 - 100 size percentile 0.317 0.282 0.221 0.292
Top 1000 0.229 0.296 0.227 0.305
Top 100 0.124 0.340 0.252 0.363
Top 10 0.057 0.276 0.223 0.316

Average
√
H 0.065 0.068

Notes: “Weight” refers to the sum of the Domar weights. “Productivity” refers to labor productivity proxied by the log of the
sales per employee ratio, as in Gabaix (2011). “Standard deviation of growth rate” reports the time average standard deviation
of growth rates within a percentile category. H is the Herfindahl index of the total firm shares.

rate of aggregate sales and employees is lower than the unweighted average of firm-level growth rate. The

reasoning is because smaller firms tend to grow faster than larger firms, conditional on survival. On the

contrary, firm-level productivity, which is defined as the log of the sales per employee ratio (see Section 3.2),

in smaller firms tend to grow slower than larger firms. This is to be expected, as smaller firms are, on

average, less efficient than larger firms (Taymaz, 2005). The table also reports the sum of Domar weights

and the averages of firm volatility, measured by the standard deviation, for each size quintile. The results

show that exist a high degree of heterogeneity and that smaller firms are more volatile than large firms.

Finally, the square root of the Herfindahl index of sales and employees shares have an order of magnitude

consistent with that reported by Gabaix (2011) and suggest that the economy is “granular”.

3.2 Idiosyncratic shocks

Following Gabaix (2011), we focus on the labor productivity shocks.18 We proxy firm-level labor productivity

using the log of its sales per worker ratio: zit := Salesit/Employeesit.
19 The growth rate is then defined

simply as git = ∆ ln zit, where ∆ denotes the difference between years t and t − 1. Firm-level growth

rates are computed using only firms present in the dataset in both years, so that it captures the intensive

18Gnocato and Rondinelli (2018) estimate the granular residual with labor productivity shocks and firm-level TFP shocks.
They show that both proxies for productivity shocks are highly correlated. See also Syverson (2004).

19We use this revenue-based productivity measure because it is not data intensive and is widely used in the literature. An
important caveat is that it confounds idiosyncratic demand and factor price affects with efficiency differences (Foster et al.,
2008). Therefore, it is not a clear measure of productivity shock, as it would be a measure based on quantities of physical
output. Empirically, however, both measures are strongly correlated (see Foster et al. (2008)).
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margin growth rates.20 Suppose that innovations to git evolve according to the following one-factor model:

git = ηt + εit, where ηt is a common shock and εit is an idiosyncratic shock. We make the identification

assumption that E [ηtεit] = 0. Firm i’s labor productivity idiosyncratic shock in year t can be estimated as

the deviation of its growth rate from the common shock to the top Q firms:

εit (Q) = git − ηt (Q) . (12)

Thus, εit captures the residual unexplained by the common shock. This approach to identifying firm-specific

shocks is standard in macroeconomics (see, e.g., Koren and Tenreyro (2007), Gabaix (2011) and di Giovanni

et al. (2014)).

To estimate Equation (12), we first need to estimate the common shock ηt (Q). Since our goal is to

assess the contribution of idiosyncratic shocks to the largest firms to aggregate fluctuations, we restrict our

attention to the top Q = 1, 000 firms, as in Gabaix (2011) robustness exercise. This choice is based on the

fact that the one-factor model employed to extract εit implicitly assumes a certain degree of homogeneity

among firms, which is likely to be a less good approximation for a large Q. The growth rate of productivity

is expected to depend on firm characteristics and factors which, in turn, depend on size. If we consider a

large number of firms with very heterogeneous size, firm characteristics can also be very heterogeneous and

thus the implicit assumption ηit = ηt ∀i may be a poor approximation. With this in mind, Section 4.3

shows the robustness of the results to alternative Qs. Once the number of potentially granular firms is

set, we estimate the common shock to the top Q as the cross-sectional median productivity growth rate,

as in Blanco-Arroyo et al. (2018). Given that the time dimension is somewhat limited and that the Great

Recession was particularly severe in Spain, the median growth rate seems a more suitable estimate of the

common shock that hit the largest firms during these years.21

The dataset contains some large outliers, which may be due to mergers, acquisitions or simply measure-

ment errors. We follow the convention in the literature and mitigate their impact by winsorizing extreme

shocks at 50%.22 Recently, the winsoring procedure to handle extreme values and outliers has been criticized

by Dosi et al. (2018), who argue that it is not necessary when analyzing granularity because large firms have

more accurate accounting information and, therefore, do not suffer from large jumps. In addition, they show

that Gabaix (2011) results are heavily influenced by such cleaning procedure. Taking into account Dosi et al.

(2018) critique, Appendix C re-estimates the idiosyncratic shocks using the arc-elasticity proposed by Davis

et al. (1996). The main advantage of this measure is that it allows us to avoid any winsorizing or trimming

procedure. We show that our results do not depend on the definition of the productivity growth rate or the

data cleaning strategy.

20In SABI, the extensive margin of entry and exit of firms cannot be calculated because it cannot be distinguished whether
the newly observed firms are a genuine entry or an entry into the database. Using the universe of French firms, di Giovanni
et al. (2014) show that the extensive margin plays no role in shaping aggregate fluctuations. Osotimehin (2019) finds that it
contributes little to the variability of French aggregate productivity.

21The conclusions reached in the present paper remain unchanged if we use the mean growth rate to estimate the common
shock instead.

22More precisely, we set ε̂it = sign (ε̂it) 0.5 if |ε̂it| > 0.5. The winsorizing procedure affects 5% of the top Q Spanish firms in
the time period 1995-2018. Results are not materially sensitive to the choice of that threshold.
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3.3 Productivity multiplier

The frameworks set up by Gabaix (2009a) and Carvalho and Gabaix (2013), among many others, predict

that GDP growth volatility is proportional to TFP growth by a factor µ that represents the productivity

multiplier (see Equation (2)). Therefore, µ can be directly estimated by the following relative standard

deviations:

µ = σY /σΛ, (13)

where σY and σΛ are the standard deviation of GDP per capita growth and TFP growth, respectively.

According to (13), the estimated multiplier over the period 1994-2018 is 2.92. However, µ is expected to

change through time, that is:

µt = σY t/σΛt. (14)

We compute the relative standard deviations at year t using a centered rolling window of 10 years. Alter-

natively, we obtain deviations from the Hodrick-Prescott trend of log GDP per capita and log TFP using a

smoothing parameter 6.25 and compute the rolling window. Panel A in Figure 1 shows that the multiplier

exhibits a clear cyclical behavior. The time average is equal to 3.41 in the two cases.

Additionally, we use the “granular” instrumental variable (GIV) methodology proposed by Gabaix and

Koijen (2020) to estimate the productivity multiplier. Our IV is the granular residual (20), which is con-

structed using the estimated shocks from (12). The granular residual is a consistent and powerful IV because

shocks are idiosyncratic and the firm size distribution presents a high degree of heterogeneity (see Table 1

and Section 3.4). We run the following ordinary least squares (OLS) regression:

gY t = constant (K) + µGIV (K) Et (K) + ut (K) , (15)

for K = 1, 2, . . . , Q, where Q = 500, 1000, . . . , 10, 000, gY t is the growth rate of GDP per capita, Et is the

granular residual and ut is the error term. We estimate the productivity multiplier µ as the coefficient on the

GIV Et. Equation (15) is also estimated by Gabaix (2011) to quantify the contribution of the idiosyncratic

shocks to the top 100 U.S. firms (i.e., K = 100) to GDP growth fluctuations.

Panel B in Figure 1 shows the estimated productivity multiplier µ̂GIV. We find that the median value

(3.48) is almost identical to the time average multiplier estimated using (14). The multiplier estimated by

Equation (13) can be seen as a lower bound. As the box plot of µ̂GIV (Q) renders clear, outliers are produced

when the granular residual is constructed with a small number of firms, (i.e., small K).

In order to simplify the analysis and to be able to clearly identify the contribution of idiosyncratic shocks

to aggregate fluctuations, in what follows, we follow the model presented in Section 2.1 and assume µ is

constant thought time. Furthermore, we assume that µ does not depend on the number of large firms K. In

line with the estimation provided by Blanco-Arroyo et al. (2018), we set µ = 3.5 ∀t,K.

3.4 Firm size distribution

The CCDF (4) implies that the probability of the largest firm (Smin/Smax)
ζ
has a frequency 1/ntail, where

ntail is the number of firms whose volume of sales is above the threshold for which the power law behavior

holds (i.e., Si ≥ Smin). Thus, the size of the largest firm is Smax = n
1/ζ
tailSmin. Likewise, the size of the ith

largest firm is approximately Si = (ntail/i)
1/ζ

Smin (see Newman (2005) for a rigorous proof). Taking logs
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Figure 1: Productivity multiplier.
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K = Q, where Q = 500, 1000, . . . , 10, 000.

and rearranging, the “Zipf” plot for the power law distribution is characterized by

ln i = c− ζ lnSi, (16)

where i is the rank of firm i and c ≡ lnntail + ζ lnSmin. According to Equation (16), if the upper tail of the

firm size distribution is power law, then the log-log plot should display a straight line.

A popular way to estimate the tail index ζ is to run an OLS using (16) as the econometric specification.

However, Gabaix and Ibragimov (2011) show that this method, known as “log-log rank-size regression”,

delivers strongly biased estimates in small samples, and suggest the following modification:

ln (i− 1/2) = c− ζ̂OLS lnSi + ui, (17)

with asymptotic standard error ζ̂OLS
√
2/ntail. We estimate specification (17) using two different cut-off

points. First, we take the tail that corresponds to 5% of the samples in each year. Note that the size of the

tail is arbitrarily chosen following the literature.23 Second, we take the tail that corresponds to those values

of sales above the top Q largest firm. That is, we set Smin = SQ, and, hence, ntail = Q.

Although the log-log rank-size regression method is commonly used in the literature, it has numerous

pitfalls (see Clauset et al. (2009) for a detailed explanation). As a cross-check, we also calculate the tail

exponent from the density associated to the CCDF (4) by using maximum likelihood estimation (MLE). The

23It is also a standard approach in the literature to determine the threshold through visual inspection of the empirical
distribution. If the distribution has a truncation point, then the threshold is typically set equal to the truncation point. As yet
another alternative, we use this approach and find that the estimates are very close to those using the 5% cut-off.
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Figure 2: Firm size distribution.
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estimator for ζ is

ζ̂MLE = n̂tail

(
n̂tail∑
i=1

Si

Smin

)−1

, (18)

with standard error ζ̂MLE/
√
n̂tail (see Newman (2005)). We follow Clauset et al. (2009) and estimate Ŝmin as

the value of sales that minimizes the distance (measured by the Kolmogorov–Smirnov statistic) between the

probability distribution of size and the best-fit power-law model above Ŝmin. Thereofore, n̂tail is the number

of firms whose sales are in the range
[
Ŝmin, Smax

]
. Additionally, we set Smin = SQ.

Panel A and B in Figure 2 show the empirical firm size distribution in year 1994 and 2018, respectively.

Particularly, we follow the intuition provided by (16) and plot the double logarithmic plot of rank vs.

sales. The distribution is characterized by a truncation point and an upper tail that displays a straight line

characteristic of the power law distribution. This visual identification is confirmed by the fits provided by

(17) and (18). Panel B and Panel C in Figure 3 present, respectively, the estimates for the tail index ζ

and the cut-offs used in the estimation through time. Despite the fact that the sample coverage grows over

time (see Panel B in Figure A.3), the estimates exhibit an almost steady value equal to 1.255 and are not

sensitive to the choice of the cut-off. The average tail index is closer to Zipf (1949) law (i.e., ζ = 1) than the

diversification argument (i.e., ζ ≥ 2), which implies that the firm size distribution is sufficiently fat-tailed

for idiosyncratic shocks to individual firms do not wash out at the aggregate level, because the idiosyncratic

shocks to large firms do not cancel out with shocks to smaller firms (Gabaix, 2011).

As discussed by Mitzenmacher (2004) and Newman (2005), the log-normal distribution can behave as a

power law.24 As an alternative, we fit a log-normal distribution on the firm size distribution using MLE. We

24See Saichev et al. (2009) for a lengthy discussion on the ongoing debate between power law and log-normal in firm size
distribution.
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impose the same cut-offs for these estimations as in the power law estimations and perform Vuong (1989)

likelihood ratio test R to compare the fits of both models.25 The sign of R indicates which model is closer

to the true model: if R is statistically greater than zero, then the test statistic presents evidence in favor

of power-law model. Figure A.4 shows that the ratio alternates positive and negative values that are not

statistically different from zero. Thus, we cannot conclude which candidate distribution provides a better

fit. As argued in Section 2.2, we follow the bulk of the literature and assume that the underlying theoretical

distribution is power law.

Finally, Panel A in Figure 2 shows the Domar weight of the largest firm through time. In our sample,

three firms alternate in the top 1: El Corte Inglés (general merchandise store), Telefónica (communications)

and Mercadona (food store). The fact that El Corte Íngles is the largest firm in our sample during the

period 1994-1998 is consequence of the low coverage in SABI database, as discussed in Section 3.1. The

reason behind the jump observed between years 1998 and 1999 is that Telefónica enters the sample 1999.

In line with Gutiérrez and Philippon (2019), we find that the largest firm’s Domar weight has not increased

through time.26 The relative size of Mercadona in 2018 is similar to that of Telefónica in 1999. As baseline,

we assume that the average Domar weight of the largest firm (1.4%) captures the evolution in time. In

Section 4.3, we relax this assumption in order to study how the granular size of the economy changes over

the business cycle.

3.5 Idiosyncratic shocks volatility

We estimate the size-shock relationship using the methodology proposed by Koren and Tenreyro (2013),

which allows for variation within firms.27 The volatility of firm-level shocks σiτ is defined as the standard

deviation of idiosyncratic shocks εit to firm i over a time block τ . The measure of size S̃iτ is the average

normalized sales within τ . Normalized sales are defined as Sit/Smin,t, where Smin,t is the value of sales of the

Qth firm in year t. To use every year in our sample, we calculate σiτ and S̃iτ in a four-year time window.

The sample is divided into 6 time blocks (i.e., τ = 6). The econometric specification is

lnσiτ = constant + α ln S̃iτ + φτ + φi + uiτ , (19)

where φτ and φi control for time blocks and firm fixed effects, respectively. Some firms enter and leave the

top Q, so they have few observations per block. To reduce the estimated volatility, we only consider those

firms that have at least 3 of the 4 years that constitute a block.

Table 2 shows that the estimated size-volatility elasticity is statistically different from zero. Therefore,

there are clear deviations from Gibrat’s law. When we include firms fixed effects, our estimate is within the

range 0.1–0.25, previously estimated in the literature (see, e.g, Stanley et al. (1996), Sutton (2002), Koren

and Tenreyro (2013), Yeh (2017), Calvino et al. (2018)).

25We use the normalized log-likelihood ratio: n
−1/2
tail R/σR. The likelihood ratio is R = L (θ1|x) /L (θ2|x), where L is the

likelihood function and θ1 and θ2 are, respectively, a vector of parameters for the power-law model and log-normal model. The
standard deviation associated to R is σR.

26Gutiérrez and Philippon (2019) find that the top 20 U.S. firms have not become larger relative to the economy. We also
calculate the Domar weight of the largest firm in the U.S. using cite Gabaix (2011) data set from Compustat North America
database and find that General Motors and Walmart alternate in the top 1. During the period 1951-2008, the relative size of
the largest has not increased.

27See also Yeh (2021), who estimates more systematically the size-variance relationship using the universe of U.S. firms, and
quantifies its impact on the explanatory power of the granular residual.
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Table 2: Idiosyncratic shocks volatility and size.

lnσiτ

Constant −1.996*** −1.813***

(0.029) (0.064)

ln S̃iτ −0.062** −0.150***

(0.020) (0.053)

φτ ✓ ✓
φi ✓

Observations 5,430 5,430
R2 0.027 0.552
Number of clusters 1,861

Notes: The specifications use the four-year standard deviation of annual productivity shocks to the Q = 1000 largest firms in
the time period 1995-2018. The size is computed at its mean value over the four-year window. Clustered (by firm) standard
errors in parentheses. ∗, ∗∗ and ∗∗∗ indicate significance at 10% , 5% and 1%.

As a robustness check, Appendix C estimates the elasticity α following Stanley et al. (1996) cross-

sectional methodology. For a given cross-section of idiosyncratic shocks and size binds, we calculate the

standard deviation of shocks and average value of sales within each bin. Then, the elasticity is estimated by

running log-log OLS regression of standard deviations on average size. The estimate is very similar to the

baseline specification.

Finally, we need to estimate the value for σmax. For each firm, we average the standard deviation of shocks

σiτ and normalized sales S̃iτ used in the estimation of specification (19). As mentioned in Section 3.1, SABI

has some limitations that makes firm-level volatility estimation quite volatile.28 We choose σmax to match

a standard deviation of 11.6%, corresponding to that of average volatility of the top 30 firms in SABI. This

number is comparable to the volatility of the growth rates of sales per employee ratio reported by Gabaix

(2011) and is in agreement with previously reported estimates (Comin and Philippon, 2005, Davis et al.,

2007, Foster et al., 2008, Haltiwanger, 2011, Bachmann and Bayer, 2014, Castro et al., 2015).

4 Quantifying the granular size of the economy

In this section, we use the conceptual framework introduced in Section 2 and the estimated parameters in

Section 3 to characterize the behavior of the granular curve first observed by Blanco-Arroyo et al. (2018).

In addition, we use our framework to propose a set of measures to quantify the granular size of the economy

and find that approximately the top 50 Spanish firms are granular, i.e., idiosyncratic shocks to these firms

may translate into aggregate fluctuations. We show that our results are robust to alternative Qs and time

varying parameters. When we allow the parameters to change through time, we observe that the granular

curve and, therefore, the number of granular firms changes with the business cycle. The average contribution

28As noted by Gabaix (2011), measuring firm volatility is also difficult because various frictions and identifying assumptions
provide conflicting predictions about links between changes in total factor productivity and changes in observable quantities
such as sales and employment.
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of idiosyncratic shocks over the cycle coincides with that observed for the entire time period studied.

4.1 Granular curve

Building on Hulten (1978) result (see Equation (1)), Gabaix (2011) constructs the “granular residual” Et,
which is a parsimonious measure of the idiosyncratic shocks to the top K firms:

Et =
K∑
i=1

Sit−1

Yt−1
εit, (20)

where firm i’s idiosyncratic shocks εit in year t are estimated using (12). Gabaix (2011) and the empirical

literature that followed estimate the contribution of the idiosyncratic shocks to the top K firms to GDP

fluctuations by regressing the growth rate of GDP gY t on the granular residual. As noted by Blanco-Arroyo

et al. (2018), the estimation is based on an exogenous choice for the number of large firms. Such “pointwise”

estimation does not provide information on the extent of the granular size of the economy (i.e., those top firms

whose idiosyncratic shocks may translate into aggregate fluctuations), as the number of firms is arbitrarily

chosen. Therefore, the contribution of the granular term to the GDP fluctuations may underestimated or

overestimated depending on the choice of K. Blanco-Arroyo et al. (2018) construct (20) for K = 1, 2, . . . , Q

and evaluate the behavior of R2 as K → Q. We follow this approach and estimate the R2 as

R2 (K) = µ2σ
2
E (K)

σ2
Y

, (21)

where σ2
E is the variance of the granular residual (20) and σ2

Y is the variance of the growth rate of GDP per

capita. Note that the behavior of R2 will reflect only changes in σ2
E , as the productivity multiplier µ is held

constant through K (i.e., µ (K) = µ ∀K). This choice is based on the stability of the multiplier to changes

in K (see Panel B in Figure 1).

As argued in Section 3, our baseline case assumes that firm i’s Domar weight and shock volatility is

constant through time. Hence, the variance of the granular residual is

σ2
E =

K∑
i=1

(
Si

Y

)2

σ2
i , (22)

where Si/Y is the time average Domar weight and the variance of shock σ2
i is held constant through time.

Section 3.4 shows that Si is well described by a power law distribution with exponent 1.255. Thus, we can use

(8) to characterize the contribution of idiosyncratic shocks to aggregate fluctuations as K → Q. Replacing

the total number of firms in the economy n by the largest K firms, the explanatory power of the granular

residual is

R2 (K) = µ2

(
Smax

Y

)2(
σmax

σY

)2
2

2− ζ ′

[
1− Γ (2/ζ ′)K1−2/ζ′

]
. (23)

Figure 4 shows the behavior of the empirical explanatory power calculated (Equation (21)). In line with

Blanco-Arroyo et al. (2018), we observe the “granular curve” behavior: a rapid increase of R2 when a small

number of top firms are included in the granular residual and slow increase after a given number of firms.

We also include the predicted behavior by (23) when we use the parameters estimated in Section 3 (see
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Table 3: Parameters.

Parameters Description Value

µ productivity multiplier
Smax/Y top 1 firm’s weight
σmax top 1 firm’s volatility
σmin top Q firm’s volatility
ζ scaling parameter size
α scaling parameter volatility
ρ correlation
N # firms in the economy
mℓ mean of lnS (lnS)
σℓ st. dev. of lnS (lnS)

Notes: µ is the average value of the fraction σY /σΛ. Smax/Y is the average Domar weights of top 1 firm. σmax is the average
standard deviation of labor productivity shocks among the top 30 Spanish firms. σY is the standard deviation of GDP per
capita growth. ζ is the average tail index.

Figure 4: Granular curve.
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Table 3). As the figure renders clear, our framework is able to characterize the dynamics of the empirical

explanatory power of the granular residual.
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4.2 Granular size measurement

As shown in Figure 4, the model developed in Section 2 describes well the behavior of the contribution of

idiosyncratic shocks to GDP growth fluctuation. Therefore, we can employ our model to provide a set of

measures that quantify the granular size of the economy, i.e., how many granular firms populate the economy.

We propose three measures based on the following three definitions of granular firms:

1. Those firms whose marginal contribution is above a constant contribution.

2. Those firms that account for 75% of the maximum granular contribution.

3. Those firms whose marginal contribution is above the marginal contribution in the equally-weighted

firms scenario.

To grasp the intuition of definition 1, let us focus on the topQ = 1000 and consider a constant contribution

between the largest firm and Q. This constant contribution is captured by the secant between firm 1 and Q,

which is given by

M =
R2 (Q)−R2 (1)

Q− 1
,

where R2 is determined by (23). Definition 1 seeks to find the number of firms whose marginal contribution

to aggregate fluctuations is above the secant, that is: ∂R2 (K) /∂K = M. This is none other than the mean

value theorem, which states that for a given planar arc between two endpoints, there is at least one point at

which the tangent to the arc is parallel to the secant through its endpoints. According to Definition 1, the

number of granular firms is given by

K∗
M =

[
Q

1−Q1−2/ζ′

(
2

ζ ′
− 1

)]ζ′/2

. (24)

Using the estimated parameters presented in Table 3, we find that K∗
M = 82. The drawback of this measure

is its dependence on the number of firms used to compute the granular curve Q.

Definition 2 relies on the existence of a maximum granular contribution when the underlying theoretical

distribution of firm size is power law (see Equation (9)). The parameters presented in Table 3 give a maximum

granular contribution of A = 23%. We propose an arbitrarily chosen threshold of 75% of this value. Thus, the

granular firms are those firms whose accumulated contribution is equal to 17.25%. According to Definition

2 the number of granular firms is given by the following expression

K∗
A =

[
1− T
Γ (2/ζ ′)

]ζ′/(ζ′−2)
, (25)

which is determined by the equation R2 (K) /A = T , where T is set to 0.75. We find that K∗
A = 36. The

drawback of this measure is the fact that depends on the exogenous threshold T .

In the spirit of Blanco-Arroyo et al. (2018), Definition 3 uses the counterfactual in which all firms are of

equal size. Let us assume a representative firm size for all firms (Si = S ∀i, where S is the representative

size). According to Equation (5), the volatility of shocks is identical across firms (i.e., σi = σ ∀i, where σ is
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the representative volatility). In this scenario, GDP growth volatility (3) becomes

σY = µ
S

Y
σ
√
n.

Assume that the economy is made only up of the top Q (i.e., n = Q), the representative size across the top

Q firms necessary to match the empirical σY is given by

S =
1

µ

σY

σ

Y√
Q
.

Plugging this size into the predicted explanatory power of the equal-weight scenario (i.e., R2 = µ2
(
S/Y

)2(
σ/σY

)2
K)

we find that, when all firms are of equal size, the explanatory power is simply the number of top K firms to

total number Q of top firms ratio:

R2
S
(K) =

K

Q
,

where K = 1, 2, . . . , Q. Definition 3 seeks to find the number of firms whose marginal contribution is

above the marginal contribution in the equal-weight counterfactual. That is, ∂R2 (K) /∂K = ∂R2
S
(K) /∂K.

According to Definition 3, the number of granular firms is given by

K∗
S
=

(
µ
Smax

Y

σmax

σY

)ζ′ [
QΓ

(
2

ζ ′
+ 1

)]ζ′/2

. (26)

We find that K∗
S
= 24. As in Definition 1, the drawback of this measure is its dependence on the number of

firms used to compute the granular curve Q.

Figure 5 shows the empirical behavior of the explanatory power of the granular residual, the maximum

contribution of idiosyncratic shocks to GDP growth volatility and the calibrated granular size for each

definition above. We also include the mean value of the three measures (K∗ = 47), which appears to be

closer to the point that visually represents the change from the granular to the atomistic regime. Therefore,

we conclude that the granular size of the Spanish economy is approximately 50 firms. In other words, if the

largest 50 firms did not exist, the Spanish economy would not be granular.

A potential concern with our baseline calibration is that two out of the three proposed measures depend

on the number of firms Q. To address this concern, in Section 4.3, we increase Q from 1000 to 2500 in steps

of 500 and re-estimate the granular size of the economy. We find that the mean value of the measurements

is still within the region that we visually identify as the regime change

Blanco-Arroyo et al. (2018) propose a methodology to calibrate the number of granular firms that consists

in gradually replacing the top firms by smaller firms. In each replacement, we compute the empirical

explanatory of the granular residual as the number of top firms increases. We observe that the average

explanatory power gradually decreases until it converges to a benchmark in which all firms are equally

weighted. The number of granular is then the point of convergence, which is approximately 450. However,

the decrease in the average explanatory power is not constant. We identify a “inner granular structure”

around firm 50 that is left unexplained. The measures proposed in the present work indicate that the

number of granular firms previously estimated by Blanco-Arroyo et al. (2018) is too conservative and it is

the inner granular structure which determines the granular size of the economy. Hence, this result indicates
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Figure 5: Granular size of the economy.
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that we should not consider the transition phase between granular and atomistic regime when quantifying the

number of large firms whose idiosyncratic shocks have a non-negligible impact on the aggregate fluctuations.

4.3 Extensions

4.3.1 Alternative Qs

As argued in Section 3.2, we focus on the top Q = 1000 firms because the homogeneity assumption used

to estimate idiosyncratic shocks is likely to be a less good approximation when taking a large Q. We now

assess the robustness of our results to alternative Qs. Specifically, we reestimate Equation (12) for Q =

1000, 1500, 2000, 2500 and the contribution of idiosyncratic shocks to aggregate (21) as K → Q. Regarding

the approximation (23), the only parameters that potentially depend on Q are the volatility of the largest

firms σmax and the size-volatility elasticity α. We observe that σmax, computed as the average standard

deviation of the top 30 firms remains unchanged as Q grows large. Therefore, any changes are attributable

to the elasticity α. The estimation of α using the specification (19) is challenging because the introduction

of a large number of small firms impacts heavily on the estimate. To attenuate this impact, we average firm

i’s productivity shock volatility in log lnσiτ and normalized sales in log ln S̃iτ over τ time blocks, and divide

them into B = 25 bins using the average normalized sales in log. Then, we compute the average volatility

σB and size S̃B within each bin B, with B = 1, . . . ,B. Finally, we use the following specification to estimate
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Table 4: Elasticity.

σB

Q = 1000 Q = 1500 Q = 2000 Q = 2500

Constant −1.933*** −1.882*** −1.885*** −1.889***

(0.088) (0.125) (0.078) (0.100)

S̃B −0.169*** −0.193*** −0.165*** −0.150***

(0.032) (0.043) (0.025) (0.031)

Observations 25 25 25 25
R2 0.585 0.506 0.677 0.535

Notes: The specifications use the average standard deviation and average normalized sales within each size bin. The number
of observations corresponds to the number of bins. ∗, ∗∗ and ∗∗∗ indicate significance at 10% , 5% and 1%

the size-volatility elasticity:

σB = constant + αS̃B + uB. (27)

Table 4 shows the estimates when Q increases from 1000 to 2500 in steps of 500 firms. The estimates are in

line with those previously estimated by specification (19). We use these values to calibrate the elasticity that

best captures the dynamics of the contribution of idiosyncratic shocks to large firms to aggregate fluctuation.

We chose the following values: 0.15 for Q = 1000, 0.2 for Q = 1500, and 0.18 for Q = 2000 and Q = 2500.

Recall that the rest of the parameters remain as presented in Table 3, as they do not depend on Q. Figure 6

shows that the behavior of R2 is quite stable to changes in the number of large firms taken to estimate the

idiosyncratic shocks. We also include the estimated granular size of the economy. In particular, we show

the mean value of the three measure proposed in Section 4.2. These are K∗ = 47 for Q = 1000, K∗ = 90

for Q = 1500, K∗ = 85 for Q = 2000 and K∗ = 97 for Q = 2500. As expected, the estimated granular size

grows as Q grows large, but the estimated values remain within the region that we can visually identify as

the change from the granular to the atomistic regime.

4.3.2 Time-varying parameters

Based on the stability displayed by the share of economic activity commanded by the largest firm and the

cross-sectional dispersion of firm sizes through time, our baseline specification characterizes the granular

curve behavior and quantifies the granular size of the economy assuming that the determinants remain

constant during entire period. We now relax this assumption to study how idiosyncratic shocks to the large

firms contribute to GDP growth volatility through time.

The empirical contribution in time window τ is

R2
τ (K) = µ2σ

2
Eτ (K)

σ2
Y τ

, (28)

where σ2
Eτ is the variance of the granular residual (20) in τ and σ2

Y τ is the variance of the growth rate of GDP

per capita in τ . We follow Carvalho and Gabaix (2013) and chose τ = 10 years. As in (21), the evolution
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Figure 6: Granular curves.
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of R2
τ (K) will reflect only changes in the relative variance, as the productivity multiplier is held constant at

3.5 through time.

The approximation of contribution (28) is

R2
τ (K) = µ2

(
Smax,τ

Yτ

)2(
σmax,τ

σY τ

)2
2

2− ζ ′τ

[
1− Γ (2/ζ ′τ )K

1−2/ζ′
τ

]
, (29)

where Smax,τ/Yτ is the average Domar weight in τ , σmax,τ and σY τ are, respectively, the volatility of shocks

to large firms and growth rate of GDP per capita in τ and ζ ′τ ≡ ζτ/ (1− α). We hold the elasticity α constant

at 0.15 because of limited time dimension does not allow us to use Koren and Tenreyro (2013) methodology.

Finally, given the difficulty of measuring the volatility of the largest firms in the data, we choose σmax,τ that

approximates the behavior of R2
τ (K) in the time window τ . The values chosen range between 0.062 and

0.155, which are still within the range of estimates reported by the literature (see Section 3.5).
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Figure 8: Granular size and its contribution over time.
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Figure 7 plots the empirical contribution of idiosyncratic shocks to GDP fluctuations (Equation (28)) and

its analytical approximation (Equation (29)). Two results are worth noting. First, the empirical contribution

exhibits the granular curve behavior in all the time windows in which the sample is divided. Second, the

granular curve exhibits a cyclical behavior: the contribution of idiosyncratic shocks to GDP fluctuations

shrinks when taking into account recession years and grows in expansion years. During the period under

study, the dynamics of the large firms play a crucial role in shaping aggregate fluctuations in times of relative

stability. Nevertheless, when taking into account the years in which the financial crisis (an exogenous shock)

hit the Spanish economy, the impact of the dynamics of large firms at the aggregate level becomes almost

negligible. In line with this intuition, Figure 8 shows that the calibrated number of granular firms (Panel A)

and its contribution to aggregate fluctuations (Panel B) increased during the Spanish economic boom and

decreased during the burst of the housing bubble.

5 Conclusion

The emergent literature on the granular origins of aggregate fluctuations challenges the tradition in macroe-

conomics by arguing that, in the presence of significant heterogeneity at the firm level, idiosyncratic shocks

to the granular (large) firms do not cancel out with shocks to smaller firms and, thus, translate into aggre-

gate fluctuations. The literature quantifies the contribution of idiosyncratic shocks to aggregate fluctuations

using an exogenous given number of large firms, which does not provide information on the granular size

of the economy, namely, the number of granular firms. We provide a conceptual to quantify the number

granular size of an economy.

The first part of our analysis characterizes, analytically, the contribution of idiosyncratic shocks to the

large firms to GDP growth volatility and shows that it is driven by the share of economic activity commanded
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by the largest firm, the volatility of the largest firm with respect to GDP volatility and two summary statistics

for large firm dynamics: the tail index of firm size distribution and the size-volatility elasticity. Additionally,

we show that changes size-volatility relationship have greater impact on aggregate fluctuations than tail

index changes, which have been the main object of study.

In the second part of the paper, we show that the granular curve is well characterized by our framework

and find that the average maximum contribution of top Spanish firms’s idiosyncratic shocks to the GDP

fluctuations is 23%. We estimate that the granular size of the Spanish economy is approximately 50 firms.

Finally, we find that the granular size exhibits a cyclical behavior: the number of firms whose idiosyncratic

shocks have an impact on the aggregate grows in expansion phases and shrinks in recession phases.

In future research, we plan to extend our framework to other countries and to include amplification

mechanisms of shocks such as the input-output network. These two additional dimensions could provide

greater insights on the observed differences in output volatility across countries.

Appendix A Proof of Proposition 1

We first plug the relationship between size and shock volatility (5) into the variance of the granular residual

(i.e., the squared granular volatility (3)). Rearranging, we have that

σ2
Y = µ2S

2α
min

Y 2
σ2
min

n∑
i=1

S2
i ,

where Si ≡ S1−α
i . If Si is drawn from power law distribution (4), then Si is a power law with exponent

ζ ′ ≡ ζ/ (1− α).29 Zaliapin et al. (2005) show that the sum of i.i.d. power-law summands can be replaced

by the maximum summand. If ζ ′ ̸= 1, then

E

[
n∑

i=1

Si

]
= Smax

1

1− ζ ′
[1− nB (n, 1/ζ ′)] ∼= Smax

1

1− ζ ′

[
1− Γ (1/ζ ′)n1−1/ζ′

]
,

where B (·, ·) and Γ (·) are, respectively, the Beta and Gamma distributions.30 In our case, we use the

following approximation:

E

[
n∑

i=1

S2
i

]
= S2

max

2

2− ζ ′

[
1− Γ (2/ζ ′)n1−2/ζ′

]
.

Then, the variance of GDP growth is

σ2
Y = µ2

(
Smax

Y

)2

σ2
min

(
Smin

Smax

)2α
2

2− ζ ′

[
1− Γ (2/ζ ′)n1−2/ζ′

]
. (A.1)

29Recall that the CCDF (4) corresponds to a density p (S) = ζSζ
minS

−(ζ+1), then the density of S is

p (S) =
p (S)

dS/dS
=

ζSζ
min

(1− α)S1+ζ−α
=

ζS
ζ/(1−α)
min

(1− α)S(1+ζ−α)/(1−α)
=

ζ′Sζ′

min

S1+ζ′
.

30The approximation B (n, 1/ζ′) ∼ Γ (1/ζ′)n−1/ζ′ is valid because n is large and 1/ζ′ is a constant.
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We use the relationship (5) and define σmax ≡ σmin (Smin/Smax)
α
. Equation (6) is the square root of (A.1)

with σmax.

In the case of ζ ′ = 2, the expression

2

2− ζ ′

[
1− Γ (2/ζ ′)n1−2/ζ′

]
can be approximated using the Euler–Mascheroni constant γ, which is defined as:

γ = lim
x→0

[
1

x
− Γ (x)

]
.

To see this, let 2/ζ ′ = 1 + x, then

lim
ζ′→2−

2

2− ζ ′
[1− Γ (2/ζ ′)] = lim

x→0−
(1 + x)

[
1

x
− Γ (x)

]
= γ.

And let 2/ζ ′ = 1− x, then

lim
ζ′→2+

2

2− ζ ′
[1− Γ (2/ζ ′)] = lim

x→0+

[
1

x
− Γ (x)

]
= γ.

Alternatively, ζ ′ = 1 only if ζ = 1 and α = 0. Thus, Gibrat’s law holds true, and the behavior of the

volatility of shocks is well characterized by the average volatility σ. In this case, the variance of GDP growth

is

σ2
Y = µ2 1

Y 2
σ2

n∑
i=1

S2
i

= µ2

(
Smax

Y

)2

σ2
n∑

i=1

1

i2

= µ2

(
Smax

Y

)2

σ2π
2

6
.

Equation (7) is the square root of the above expression.

Appendix B Proof of Proposition 2

We cannot assess de impact of δ and α on R2 using (8) because we have to take into their impact on

Smax and σmax first. As discussed in Section 3.4, Smax = n1/(1+δ)Smin, thus an increase in δ decreases

Smax, ceteris paribus. Using the definition of σmax and the relationship between δ and Smax, we have that

σmax = σminn
−α/(1+δ). Therefore, ceteris paribus, σmax increases when δ increases and decreases when α

increases. Plugging these expressions into (A.1) and rearranging, we get that

R2 = µ2

(
Smin

Y

)2(
σmin

σY

)2

n2/ζ′ 2

2− ζ ′

[
1− Γ (2/ζ ′)n1−2/ζ′

]
.
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The impact of δ and α on R2 is then

∂R2

∂δ
=

∂ζ ′

∂δ

∂R2

∂ζ ′
=

1

1− α

∂R2

∂ζ ′
=

ζ ′

1 + δ

∂R2

∂ζ ′
< 0

∂R2

∂α
=

∂ζ ′

∂α

∂R2

∂ζ ′
=

1 + δ

(1− α)
2

∂R2

∂ζ ′
=

ζ ′

1− α

∂R2

∂ζ ′
< 0,

where

∂R2

∂ζ ′
= µ2

(
Smin

Y

)2(
σmin

σY

)2
2

ζ ′2 (2− ζ ′)
2

{
n2/ζ′ [

ζ ′2 + 2 (2− ζ ′) lnn
]
−

nΓ (2/ζ ′)

[
ζ ′2 + 2 (2− ζ ′)

Γ′ (2/ζ ′)

Γ (2/ζ ′)

]}
< 0

As one would expect, the more homogeneity in the firm size distribution (larger δ) and the more inelastic

is volatility to size (larger α), the lower the contribution of idiosyncratic shocks to GDP fluctuation (smaller

R2). The ratio between the two expressions is the elasticity (11).

Appendix C Alternative construction of the granular residual

In our baseline specification (see Section 3.2), firm-level labor productivity growth rates are defined as yearly

natural log differences. Due to the existence of mergers, acquisitions or measurement errors, we observe

some large jumps. We follow the convention in the literature and attenuate the impact of these outliers

by winsorizing them. This technique has recently been criticized by Dosi et al. (2018), who argue that

supply-driven granular shocks play no role when this cleaning procedure is not carried out. In this section,

we show that our results are robust to the data cleaning strategy.

C.1 Alternative productivity growth rates

As an alternative approach, we now calculate the firm-level labor productivity growth rates using the arc-

elasticity adopted by Davis et al. (1996):

g′it ≡ 2

(
zit − zit−1

zit + zit−1

)
. (C.1)

That is, the denominator is the average of the beginning and end period levels, rather than the beginning

period level. This growth rate, which we label DHS, has two main advantages compared with the log

difference. First, it ranges from −2 to 2 and thus limits the impact of outliers. Second, it avoids pitfalls

associated with temporary transitory shocks and measurement errors (Neumark et al., 2011).

The idiosyncratic productivity shocks are estimated as in (12), namely the deviation of g′it from the

common shock η′t (Q):

ε′it = g′it − η′t (Q) . (C.2)

where the common shock to the top Q = 1000 firms is estimated as the median productivity growth rate for

Spain. The key difference with respect to (12) is that shocks are already bounded. Thus, these estimated

28



Figure A.1: Empirical probability density of idiosyncratic productivity shocks.
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Notes: Pooled empirical densities on semi-log scale of idiosyncratic productivity shocks to the top Q = 1000 largest firms in
Spain during the period 1995-2018. Winsorized shocks and DHS shocks refer to the estimated idiosyncratic shocks according
to Equation (12) (see Section 3.2) and (C.2), respectively. The solid and dashed lines show the exponential power distribution
fit (C.3) obtained by maximum likelihood estimation of the scale (a), shape (b) and location (m) parameters. The resulting
estimates are shown in Table 2.

shocks do not present extreme values that need to be winsorized to an exogenously determined threshold,

such us 50% in Section 3.2.

We now assess the existing differences between specification (12) and (C.2) by constructing the empir-

ical probability density of the idiosyncratic shocks. Figure A.1 presents the pooled empirical densities of

idiosyncratic productivity shocks to the top Q largest firms. We show the pooled densities rather than the

year-by-year densities because they are quite stable through time (see Figure A.5). They exhibit a markedly

“tent-shape” form on semi-log scale. This is a well-known behavior of the distribution of firm size growth

rates since the seminal work of Stanley et al. (1996). They found that the distribution of the growth rates of

sales and employees is well characterized by an Laplace distribution. Delli Gatti et al. (2005) show that this

behavior is caused by the fact that both variables exhibit a power-law behavior. In particular, they show that

when the logarithm of a power-law random variable follows an exponential distribution, the difference of two

exponential random variables becomes a Laplace distribution. Therefore, given that our measure of labor

productivity is the sales per employee ratio, it is not surprising that the distributions of the productivity

growth rate and idiosyncratic shock display also such behavior.31

31Recall that firm i’s labor productivity growth rate is simply the difference between i’s sales and employees growth rates:

git = ∆ ln zit = gsalesit − gemployees
it , where gsalesit = ∆ ln salesit and gemployees

it = ∆ ln employeesit. If both gsalesit and gemployees
it

are distributed as a Laplace, then so is git. In addition, if εit = git − ηt, where the shock ηt is common to all firms in year t,
then εit is also distributed as a Laplace.
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Table A.1: Maximum likelihood estimates of the exponential power distribution.

ε ε′

a 0.122∗∗∗ 0.122∗∗∗

(0.004) (0.004)

b 0.893∗∗∗ 0.886∗∗∗

(0.069) (0.067)

m −0.003∗∗ −0.003∗∗

(0.001) (0.001)

Notes: Maximum likelihood estimates of the exponential power distribution (C.3). Winsorized shocks ε are estimated using
(12) and DHS shocks ε′ are estimated using (C.2). Standard errors in parentheses. ∗, ∗∗ and ∗∗∗ indicate significance at 10% ,
5% and 1%.

In the literature that studies the empirical distribution of growth rates (see, e.g., Bottazzi et al. (2002),

Bottazzi and Secchi (2006), Bottazzi et al. (2011)), it is standard to use the exponential power distribution,

also known as Subbotin distribution (Subbotin, 1923):

fS (x; a, b,m) =
1

2ab1/bΓ (1 + 1/b)
exp

(
−1

b
|x−m

a
|b
)
, (C.3)

where a, b ∈ R+, m ∈ R, Γ (·) denotes the Gamma function and x ∈ {εit, ε′it}. The distribution is character-

ized by the scale parameter a, the shape parameter b and the location parameter m. It comprises the Laplace

(b = 1) and the normal (b = 2) distributions as special cases. As expected, the empirical distributions are

well approximated by (C.3) (see Figure A.1). The resulting estimates are shown in Table A.1, along with the

corresponding standard errors. Notice that all parameters are virtually unaffected by winsorization. Con-

trary to Dosi et al. (2018), the distribution of productivity shocks remains fat-tailed after the winsorizing

procedure.

The fact that the distribution of the idiosyncratic shocks is fat-tailed is in direct contradiction with the

prediction of Gibrat’s law that the distribution should be normal. Therefore, models that consider Gibrat’s

law as a baseline (e.g., Gabaix (2011), di Giovanni and Levchenko (2012) and Carvalho and Grassi (2019))

not only omit the negative relationship between size and volatility but also implicitly impose a degree of

homogeneity in the size of idiosyncratic shocks to large firms that is at odds with the piece of evidence

presented.

C.2 Alternative estimation of the size-volatility relationship

Before assessing the potential impact of the winsorizing process on the granular curve, we re-estimate the

relationship between size and the volatility of DHS shocks using our baseline methodology (see Section 3.5).

Table A.2 presents the estimates for the elasticity α. Compared to our baseline estimation, these results

show that the deviation from Gibrat’s law is even greater when we do not resort to the winsorization process

to handle outliers. Yeh (2019) also finds that the relationship between size and the volatility of growth rates

becomes steeper when using DHS growth rates rather than log-difference growth rates.
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Table A.2: Alternative idiosyncratic shocks volatility and size.

lnσ′
iτ

Constant −2.000*** −1.792***

(0.032) (0.062)

ln S̃iτ −0.037* −0.164***

0.022 0.062

φτ ✓ ✓
φi ✓

Observations 5,435 5,435
R2 0.028 0.557
Number of clusters 1,870

Notes: The specifications use the four-year standard deviation of annual productivity shocks, calculated using DHS growth
rates (C.2), to the Q = 1000 largest firms in the time period 1995-2018. The size is computed at its mean value over the
four-year window. Clustered (by firm) standard errors in parentheses. ∗, ∗∗ and ∗∗∗ indicate significance at 10% , 5% and 1%.

As an alternative to the Koren and Tenreyro (2013)’s methodology, we also estimate the relationship

using the cross-sectional methodology employed by Stanley et al. (1996) and Sutton (2002). Although this

methodology captures the degree of dispersion in idiosyncratic shocks rather than firm’s shock volatility over

time, we decide to take it into account because it has long been used by the literature. The procedure is as

follows. First, we pool the normalized sales (i.e., Sit/Smin,t) and productivity shocks to the top Q = 1000

firms over time and divide them into B = 16 bins using normalized sales. Second, we fit the empirical

distribution of shocks in each bin B, with B = 1, . . . ,B, using the distribution (C.3). Thus, we have an

estimate for the scale parameter aB, shape parameter bB and location parameter mB for each bin B. We

compute the cross-sectional standard deviation32

σB = aBb
1/bB
B

√
Γ (3/bB)√
Γ (1/bB)

and the average normalized sales S̃B within each bin. Finally, we run the following OLS regression:

lnσB = constant + α ln S̃B + uB. (C.4)

The estimated coefficient from (C.4) reflects the relationship between size and dispersion. As noted by

Thesmar and Thoenig (2011), the main disadvantage of using cross-sectional dispersion is that it does not

remove the average growth rate of the firm and, hence, it does not eliminate the bias in the evolution of firm

volatility caused by a change in the distribution of firm’s growth potential. However, the results are similar

to the baseline specification (see Table A.3).

32Due to its symmetry, the Subbotin density has all central moments of odd order equal to zero. The central moment of
order 2l reads

M2l =
(
ab1/b

)2l Γ ((2l + 1) /b)

Γ (1/b)
.
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Table A.3: Idiosyncratic shocks dispersion and size.

lnσB

Subbotin fit Standard deviation

Winsorized DHS Winsorized DHS

Constant −1.633*** −1.550*** −1.418*** −0.983***

(0.107) (0.267) (0.129) (0.186)

ln S̃B −0.102*** −0.174* −0.187*** −0.247***

(0.033) (0.083) (0.040) (0.058)

Observations 16 16 16 16
R2 0.401 0.239 0.608 0.566

Notes: Winsorized refers to growth rates calculated using (12). DHS refers to growth rates calculated using (C.2). Subbotin
fit estimates the shocks volatility using (C.3). Standard deviation estimates the shocks volatility using the standard deviation
of the shocks within bin B. The number of observations corresponds to number of bins B. Standard errors in parentheses. ∗,
∗∗ and ∗∗∗ indicate significance at 10% , 5% and 1%.

C.3 Alternative granular residual

Under DHS definition of growth rates (C.1), the correct weights for aggregation are

w′
it ≡

Sit + Sit−1

Yt + Yit−1
, (C.5)

the granular residual is

E ′
t =

K∑
i=1

w′
itε

′
it (C.6)

and GDP growth is

g′Y ≡ 2

(
Yt − Yt−1

Yt + Yt−1

)
. (C.7)

Following the procedure described in Section 4, we compute the empirical contribution of idiosyncratic

shocks to GDP growth fluctuations, its approximation and calibrate de granular size of the economy. Fig-

ure A.2 shows that the granular curve behavior is still present and the approximation characterizes such

behavior. The calibrated number of granular firms is 45.
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Figure A.2: Granular curve with alternative shocks.
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Appendix D Additional figures

Figure A.3: Sample characteristics.
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Figure A.4: Comparison of candidate distributions.
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Figure A.5: Year-by-year empirical probability density of idiosyncratic productivity shocks.
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