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Abstract

Patent protection involves a well-known welfare tradeoff between ex-ante inno-
vation incentives and ex-post market distortions. The recently enacted price regu-
lation on patented drugs in the United States signifies a shift to mitigate the latter
damage at the expense of potential losses in research and development. I estimate
static demand and dynamic model of pharmaceutical firms’ continuation decisions
in clinical trial. I use the estimates to evaluate the welfare effects of the price regu-
lation, accounting for both consumers’ welfare gain from decreasing drug prices and
potential welfare loss from missing future development of better drugs. Counterfac-
tual simulations demonstrate that the implementation of price regulation, imposing
a price cap 10% lower than the oligopoly price on the highest revenue-generating
drug, result in up to a 7% increase in consumer welfare.

1 Introduction

Patent protection serves as an incentive for innovation, yet it allows patent holders to
set prices above marginal costs once they invent products. The effectiveness of patent
protection, including factors such as patent duration and price regulation on patented
goods, entails a welfare tradeoff between fostering ex-ante innovation and potentially
causing ex-post market distortions. Striking the right balance is critical for the well-
designed patent system.

While this tradeoff has been acknowledged for a long time (Clark, 1915; Nordhaus,
1969; Scherer, 1972), our understanding of the quantitative impacts of different patent
systems on R&D incentives and consumer/social welfare remains surprisingly limited. The
empirical literature on innovation has predominantly focused on R&D investments as an
outcome variable. Evaluating innovation and its policy implications, however, should be
grounded in welfare considerations, for the value of innovation diminishes significantly if
the resulting goods are not affordable. This issue is particularly pertinent in the ongoing
policy debate in the United States concerning the price regulation of patented drugs. The
Inflation Reduction Act (hereafter IRA), enacted in 2022, provides Medicare the author-
ity to negotiate drug prices for medications in the late stages of patent life, in response
to substantial increase in drug prices over the past few decades. In contrast, contro-
versy surrounds this action, particularly fueled by research-based global pharmaceutical
companies. These companies, potentially facing losses of billions of dollars due to this
legislation, argue against it, expressing concerns about discouraging R&D investment. It
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is crucial to recognize that an ill-designed policy lacking a robust evaluation may impose
significant welfare costs in the future.

Addressing the question naturally aligns with structural models, as welfare evalua-
tion and various policy counterfactuals are essential. To this end, this paper develops and
estimates a structural model of pharmaceutical firms’ R&D decisions in clinical trials. No-
tably, the model explicitly integrates demand estimation, allowing for the evaluation of
consumer welfare and profit estimates without relying on a reduced-form profit function.
The estimated model enables me to assess anticipated policy impacts through counter-
factual simulation.

The empirical analysis relies on two distinct datasets, each utilized for the demand
estimation and the dynamic estimation. The first dataset, used for demand estimation,
comes from a publicly available, nationally representative survey of the United States.
This survey captures individual expenditures on each prescribed drug. For dynamic esti-
mation, I leverage a database that compiles comprehensive development information for
drug projects from their initiation. The focus of this analysis is on the diabetes drug
market due to its substantial market size and the intensive nature of R&D within this
therapeutic area.

In my model, firms make R&D choices to pursue future FDA approvals for introduc-
ing new drugs to the market, and subsequently, firms sell their approved drugs in static
markets. The incorporation of vertical differentiation of products is crucial to address
questions related to innovation. However, accurately measuring drug quality, which in-
cludes factors such as efficacy, side effects, drug interactions, and ease of use, poses a
challenge. Since drug quality is arguably a stable, drug-specific property, I opt to esti-
mate drug quality as unobserved characteristics in demand estimation, as in Berry et al.
(2016), Hashmi and Van Biesebroeck (2016) and Khandelwal (2010). Non-parametric
estimates of the drug quality reveal a steady escalation, closely mirroring the observed
pattern of market turnover. Newer therapeutic-class drugs have gained significant market
shares, despite charging much higher prices.

In the clinical trial stage, firms decide whether to continue or discontinue their drug
development projects. The profits derived from demand estimation are incorporated into
a dynamic clinical trial stage, serving as payoffs from continuation. One challenge in
linking the demand model with the dynamic clinical trial model arises from the fact that
approximately 90% of drugs in development fail during clinical trials, making it impossible
to directly recover the drug qualities of these unsuccessful drugs. To address this, I assume
that firms draw drug quality from a quality distribution. The mean of quality distribution
is allowed to exogenously change over time based on estimates of marketed drug quality.
Employing the forward-simulation technique developed by Bajari et al. (2007), I estimate
dynamic parameters to fit both estimated quality distribution of marketed drugs and
clinical trial decisions. A pivotal parameter for counterfactual results is one governing
how firms’ R&D respond to expected profits. The identification of R&D responsiveness
to expected profits hinges on variations of expected profits due to factors such as scientific
failure risk, market competition, and market size.

Computing the equilibrium of the model poses a challenging task. Although the two-
step estimation method circumvents the need to solve for equilibrium during estimation,
it becomes necessary for conducting counterfactual simulations. The value functions and
policy functions are time-dependent, influenced by changing exogenous market and clini-
cal trial characteristics. Furthermore, expected values from entry depend on distributions
of products characteristics in the market such as quality levels of marketed drugs, whether
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they are generic or branded, and the remaining years of patent protection. These factors
significantly expand the state space and makes the model non-recursive, rendering stan-
dard value or policy function iteration approaches impractical. To tackle this challenge,
I employ an algorithm that significantly reduces computation time by combining a Pakes
and McGuire (2001)-type algorithm with functional approximation.

Using the estimated model, I analyze the effects of price regulation on patented drugs
on pharmaceutical firms’ R&D response and resulting consumer welfare. Specifically,
I examine a counterfactual scenario that mirrors the anticipated U.S. price regulation,
wherein only a branded drug with top sales is subject to a price cap, representing a 10%
decrease from the unregulated oligopoly price. My counterfactual simulations suggest that
the price regulation can lead to an increase in consumer surplus ranging from 0.5% to
7%, despite a predicted decrease in the continuation probability of clinical trials ranging
from 0.2% to 4%.

This paper proceeds as follows. The following paragraphs discuss how this paper re-
lates to the existing literature. In Section 2, I discuss industry background. Section 3
describes the data and descriptive statistics. In Section 4, I present a model. I describe
estimation in Section 5 and results in Section 6. Finally, in Section 7, I discuss computa-
tion method of counterfactual simulation and a theoretical consideration about a policy
design problem. Section 8 concludes.

Related literature

This paper is related to the literature studying the role of patent on R&D and its welfare
consequence (Nordhaus, 1969; Moser, 2005; Budish et al., 2015; Moscona, 2020). Theoret-
ically, an unambiguous prediction is that stronger patent protection induces more R&D
investment. In contrast to the theoretical clarity, previous empirical work to study the
impact of patent protection on technological progress are limited (Bryan and Williams,
2021). Sakakibara and Branstetter (2001), Lerner (2009) and Qian (2007) find little evi-
dence that stronger patent protection encourages innovation, while Moser (2005), Budish
et al. (2015) and Moscona (2020) find patent protection affects the direction and the level
of innovation.

Since direct measures of R&D investment are easy to access such as clinical trial starts
and new drug approvals, pharmaceutical industries have attracted many empirical studies
of innovation. A number of papers assess impacts of market profitability on R&D incentive
in different settings and they broadly reach consensus of its positive effect (Acemoglu and
Linn, 2004; Blume-Kohout and Sood, 2013; Finkelstein, 2004; Duggan and Scott Morton,
2006; Dranove et al., 2020). Cunningham et al. (2021) build a model about and empirically
confirm the presence of “killer acquisitions”, where incumbent firms acquire inventors of
competing products and then discontinue their projects in order to preempt competition.
However, research that directly connects to welfare-relevant outcomes are limited.

Demand estimation is of vital importance to discuss consumer welfare. There are
many papers that implement IO type demand estimation in the pharmaceutical context
(Dunn, 2012; Chaudhuri et al., 2006; Dubois and Lasio, 2018; Maini and Pammolli, 2023;
Björnerstedt and Verboven, 2016; Crawford and Shum, 2005a). Among them, Dunn
(2012) estimates BLP-type of demand model of anti-cholesterol drugs and finds quality-
adjusted price decreases over time. Although the motivation to estimate demand model is
the same (i.e., to evaluate welfare gain of production introduction), he does not consider
pharmaceutical companies’ R&D investment and thus cannot investigate the key tradeoff
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of patent protection and price regulation that this paper studies. Another related paper in
this literature is Chaudhuri et al. (2006) who investigate price change and the associated
welfare loss from patent protection. Again, firms R&D is not modeled and they only
estimate downside of patent protection. Rao (2020) and Khmelnitskaya (2023) are the
only studies I am aware of that model and estimate dynamic game of pharmaceutical firms’
clinical trials. My model of clinical trial stage builds on them. The contribution of this
paper is to develop a framework to connect the clinical trial model to demand estimation,
and to provide an estimation and computation strategy. This enables me to investigate
welfare implications of R&D as well as a variety of market-related counterfactuals.

My model is estimated using a conditional choice probability (CCP)-based method
(Hotz and Miller, 1993) with forward simulation (Bajari et al., 2007). My method builds
on the literature using dynamic games to study innovation (Goettler and Gordon, 2011;
Hashmi and Van Biesebroeck, 2016; Igami, 2017; Igami and Uetake, 2019; Yang, 2020).
These papers primarily concentrate on exploring the relationship between competition
and innovation, examining products that some firms have produced rather than newly
invented products protected by patents. Consequently, their frameworks cannot be readily
applied to address the specific questions posed in this paper. One technical contribution
of this paper is to develop a framework to incorporate innovative goods, where most of
goods fail during R&D phase and do not reach to marketing. The difficulty is that we
cannot observe demand data of these un-commercialized goods. I boil down a variety of
differentiation of developed drugs into a single dimension of quality index, which makes
a difference of demand.

Several papers study the effects of regulations on innovation. Most of the papers
are reduced-form empirical studies looking at the effects of labor laws regulations on
innovation (Acharya et al., 2013; Griffith and Macartney, 2014). An exception is Aghion
et al. (2023) who build endogenous growth model to assess the equilibrium impact of
labor regulatory burden on innovation and calibrate the model by using French firm-level
panel data. As far as I know, no paper has studied the welfare effect of patent-relevant
price regulation.

Computing equilibrium of my model is a nontrivial task because all the information
of market goods becomes state variable. To address this challenge, I employ several tech-
niques. First, I use an alternative equilibrium concept, Ifrach and Weintraub’s (2017)
moment-based Markov equilibrium (MME), rather than Markov perfect equilibrium. Ap-
plications of the MME include Corbae and D’Erasmo (2021); Caoui (2022); Jeon (2022).
Second, I approximate the value function (Kalouptsidi, 2017). Finally, I combine these
techniques with simulation-based value function iteration similar to methods considered
by Collard-Wexler (2013).

2 Industrial background

Drug Development

Drug development is a resource-intensive and time-consuming process, with a relatively
low likelihood of final FDA approval. The entire process is carefully structured, regulated,
and incurs significant costs. The process of developing pharmaceutical products involves
multiple stages, each with specific milestones and regulatory requirements. Following
the identification of potential drug compounds through routine discovery processes, they
undergo preclinical evaluations to assess efficacy and toxicity. If successful, it can begin
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(a) Share dynamics (b) Average price dynamics

Figure 1: US diabetes drug markets. Average price dynamics of first-line medicine, met-
formin, and new class drugs.

clinical research with human subjects. The clinical testing period involves three phases.
In Phase I, the drug is tested on 20 to 100 healthy subjects to test the safety of the
drug. In Phase II, the drug is tested on a small group of patients with the disease to
prove the drug has the intended effects on the patients. Phase III is conducted to assess
the drug’s effectiveness on a large sample of patients. Notably, successful completion of
each phase is necessary before progressing to the next. The FDA plays a crucial role in
approving investigational new drug applications and new drug applications, with close
communication between pharmaceutical firms and the FDA throughout the process.

Diabetes Drug Market

I particularly focus on diabetes drugs for the estimation of the model with two following
reasons. First, diabetes is one of the most research-intensive diseases in the last two
decades. In my data, diabetes amounts to the highest number of drugs which have
conducted preclinical development. Second, the number of diabetic patients is relatively
high compared to other research-intensive diseases such as cancer. This is necessary to
obtain sufficient samples of data the demand estimation uses, detailed more later.

The U.S. diabetes drug market has experienced a notable development with the in-
troduction of new-generation drugs since the late 2000s. Therapeutic classes known as
DPP-4 and GLP-1 were initially approved around 2005, and a more recent class, SGLT-2,
entered the U.S. market in 2013. Currently, the FDA has granted approval to a dozen
drugs within these novel classes, with no generic counterparts available yet. While these
drugs have demonstrated efficacy in treating type 2 diabetes mellitus and have captured
a portion of the market share (Figure 1 (a)), they have not exhibited a distinct superi-
ority over metformin. Metformin, widely used as a first-line medication and available in
generic form, presents a more cost-effective alternative. The high cost associated with the
new-generation drugs poses a significant barrier, with these medications being more than
ten times expensive than generic metformin and experiencing escalating prices in the last
decade (Figure 1 (b)).
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Medicare Drug Price Negotiation Program

IRA, enacted into law in 2022, provides the Centers for Medicare & Medicaid Services
(CMS) the authority to directly negotiate the prices of certain high expenditure, single
source drugs without generic or biosimilar competition.1 The substantial increase in drug
prices over the past few decades has become a cause for concern, leading to widespread
demands for government intervention. In response to public pressure, the government
enacted drug price regulations. The White House documents that “Millions of Part D
enrollees depend on these vital treatments to treat life-threatening conditions including
diabetes, heart failure, and cancer, but many struggle to access their medications because
of prohibitive costs” regarding drugs selected in a first negotiation cycle. Countering this
claim, global pharmaceutical firms have employed lobbying efforts and legal challenges to
impede the enactment and implementation of laws related to drug price regulations.

Annually, CMS will select drugs for negotiation, and the resulting negotiated prices
from the first cycle will be effective in 2026. In the initial cycle, CMS selected ten drugs
for negotiation, with four of them being diabetes drugs.

In order to be eligible for negotiation, drugs must be at least seven years (for small-
molecule drugs) or eleven years (for biologics) past its FDA approval or licensure date.
In addition, medicines qualify for price negotiation if they are covered under Medicare
Part D, Medicare’s outpatient prescription drug benefit program, and are single source
brand-name drugs without generic or biosimilar competition. CMS selected ten from 50
medications with the highest Medicare Part D covered prescription drug costs.

A type of the price regulation will be price ceiling. CMS propose maximum fair
price to the firms of the ten drugs. In developing an initial offer, CMS will start with
evidence related to therapeutic alternatives and then consider other factors, such as costs
of R&D and production and distribution of the selected drug. By September 1, 2024,
CMS will publish any maximum fair prices agreed upon between CMS and participating
drug companies.

3 Data and Descriptive statistics

Demand Data

I use data from Medical Expenditure Panel Survey (MEPS) to obtain market shares and
prices of diabetes drugs. The survey is publicly available and nationally representative in
the US, and recodes details on the individual’s medical expenditure on each prescribed
drug, insurance, demographic characteristics (age, sex, income, education, medical his-
tory) and health conditions. The yearly dataset covers from 1996 to 2021.

Each drug in MEPS is linked to FDA’s National Drug Code (NDC). I identify a
corresponding drug name and a dosage form (e.g., 50 mg or 100mg) for each NDC by using
publicly available database, Find-A-Code. I supplement information on manufacturers,
Anatomical Therapeutic Chemical (ATC), brand and generic names, whether drug is
generic or branded and FDA’s approval data from several sources including FDA’s Orange
Book and public databases called DrugBank and KEGG.

1https://www.cms.gov/files/document/fact-sheet-negotiation-process-flow.pdf and
https://www.cms.gov/files/document/revised-medicare-drug-price-negotiation-program-gui

dance-june-2023.pdf
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For the analysis that follows, I aggregate across all dosages of the same drug because
they are the same invented product from the development perspective. I use drugs of
ATC code A10 as diabetes drugs. Regarding mixture drugs, which contain two molecules
in a single medicine, I treat them as single-molecule drugs with more novel molecules
(the other of Metformin or Glimepiride), whose producers are left unchanged. I define
potential consumers by using ICD code, a medical classification list, and disease history
variables of each individual in MEPS. I limit the sample to those with disease history of
either diabetes, hypertension, cholesterol metabolism or some other minor disease. The
restricted samples cover more than 99% consumptions and individuals who buy diabetes
drug. percentage of no drug consumers.

MEPS records Quantity and Expenditure variables for each prescription. Individuals
prescribe multiple drugs including the same drug many times with possibly different
quantities during one year. I assume each observation is independent and an individual
with N observation at a year does makes N choices among alternatives including outside
option. I assume consumers buy qj quantity as a single good j at each choice, and I
calculate it as an average of Quantity. The quantity of product j in the usual economic
meaning thus corresponds to just the number of observations buying drug j, and the
market share is defined as:

msjt =
#obs. buying j

#individuals buy no drug +
∑

k∈Jt #obs. buying k
,

where Jt is a set of drugs sold in year t. To construct the price variable, I use total
expenditures including both the amount paid by the insurer and the amount paid out-
of-pocket by the individual, and call this Expenditure. Expenditure of the same drug and
year substantially differ across individuals, reflecting complex U.S. medical and insurance
systems. However, it is necessary for demand estimation to specify prices that individuals
in sample do not actually consume. Although one can possibly estimate a demand model
with price dispersion, I decide to construct single price variable with a consideration of
the scope of the paper. I define price of drug j at period t, denoted by Pjt as follows; First,
I regress Expenditure on Quantity without constant for each year, call the coefficient pjt,
which is intended to measure price for one unit of Quantity. Price Pjt is then calculated
as Pjt = pjtqj. Pirce is adjusted in 2021 U.S. dollars.

Summary statistics is provided by Table 1 and 2 for every two years. The market size
of potential consumers grows substantially during 2000s, while the share of outside option
is fairly stable. The highest share except for the outside option is increasing. The number
of branded drugs increases during 2000s and hits the peak around 2010. Most notably,
the average price of branded drugs drastically increases in 2010s, while the generic price
is also increasing.
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year market size outside share max inside share
1998 1.26e+8 0.32 0.14
2001 1.75e+8 0.35 0.18
2004 2.27e+8 0.31 0.14
2007 3.03e+8 0.32 0.20
2010 3.57e+8 0.36 0.22
2013 3.47e+8 0.33 0.26
2016 3.54e+8 0.35 0.25
2019 3.12e+8 0.30 0.29

Table 1: Summary Statistics

year # brand # generic mean price brand mean price generic s.d. price
1998 12 6 136.27 74.13 73.67
2001 16 7 197.86 129.43 98.80
2004 20 5 209.45 122.72 88.42
2007 24 4 398.40 55.64 508.14
2010 23 6 605.36 126.81 313.76
2013 18 5 957.82 164.93 770.68
2016 16 6 2561.23 310.93 3034.84
2019 20 7 2086.69 288.59 1040.11

Table 2: Summary Statistics

Clinical Trial Data

The data source used for the dynamic estimation is Pharmaprojects database, which has
been used in earlier research studying drug development (e.g., Blume-Kohout and Sood
(2013); Cunningham et al. (2021)). Pharmaprojects contains comprehensive information
starting from 1989 until now, tracking drug projects from early-stage development through
to launch or discontinuation. Using Pharmaprojects, I identify dates of phase transition
for all drug-disease-company-country pairs, and restrict the samples to those in U.S. and
with type-1 and type-2 diabetes. I exclude reformulation of existing drugs, which include
mixture drugs, to focus on novel drug development.

An outcome variable used in the analysis is whether to continue development from
Phase I to Phase II. Pharmaprojects makes a determination about project discontinuation
(including “No Development Reported”,“Discontinued”, and “Suspended”) very carefully
and conservatively. Therefore, dates recorded in Pharmaprojects as discontinuation are
not the dates companies make discontinuation decisions. Probably, the more appropriate
modeling to match the reality and the data would be firms making decisions whether
to progress projects to the next phase or to wait without any progress, in which firms
will face the same choice if choosing the latter. However, this makes it significantly
complicated to solve and identify the model without much benefit, and thus I decided to
choose a much simpler model. Since phase transition dates are reliable information as
firms decision timing, I calculate average duration from the entry into Phase I and the
entry into Phase II and assume that all firms have to make decisions after the time passed.
Figure 2 panel (a) presents the probability of choosing continuation of development and
the number of projects in each year. The continuation probability decreases in 2000s and
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stays around 50% in 2010s. The number of projects, which is treat as exogenously given,
sharply increases around 2010.

(a) Phase transition probability from Phase
I to II, and Number of Phase I projects

(b) Phase transition correlation

Figure 2

A key parameter in counterfactual simulation is the responsiveness of continuation
decision to expected profits. The identification of it depends on the degree of positive
correlation between expected profits and continuation decisions. Table 3 shows results of
logistic regressions predicting continuation of Phase II by the number of opponent projects
in each phase and market. Even though coefficients are statistically insignificant due to
small sample size, mostly firms negatively respond to the competitiveness. Figure 2 panel
(b) plots correlation between continuation probability from Phase I to II (y axis) and
success probability to reaching FDA approval (x axis) for different decades and different
firm sizes. The firm size is defined using the number of projects in the data. Strong
positive correlation within a firm size will be an important variation to estimate the
responsiveness parameter, and the second column of Table 3 also captures the correlation.
Interestingly, Figure 2 panel (b) shows negative correlation conditional on age. This
might also suggest the selection during clinical trials, since bigger firms conduct more
projects and they can selectively pick some projects showing promising results. Since one
firm’s products steal shares their own shares each other, big firms having many projects
under development would adopt a more stricter criterion of development continuation
decisions. The interesting factors, the selection and multi-product firms, are not taken
into consideration in this version of the paper.

4 Model

In this section, I present a dynamic differentiated-good oligopoly model. Time is discrete
with infinite horizon, t = 0, 1, · · · . The model consists of two parts: static demand
and Bertrand competition, and dynamic clinical trial stage. In the clinical trial stage,
a firm makes a decision of trial continuation only once, for simplicity. Khmelnitskaya
(2023) decomposes the reason of development discontinuation into strategic and scientific
components, and finds that the strategic factor plays little role in exit of late phases.
Also, it is straightforward to incorporate multiple decisions of one project. Building and
estimating Ericson and Pakes (1995)-type models, where incumbent firms have scope of
future R&D investment of new products, is left for further research.
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Model 1 Model 2
Intercept 2.16 (0.68)
# Phase1 −0.04 (0.03) −0.04 (0.03)
# Phase2 0.05 (0.07) 0.05 (0.07)
# Phase3 + Registered −0.03 (0.06) −0.03 (0.06)
# Market −0.07 (0.05) −0.06 (0.05)
Company size big 1.66 (1.54)
Company size middle 2.23 (1.15)
Company size small 2.33 (1.00)
Probability of approval 0.76 (3.35)
AIC 738.41 866.84
BIC 760.20 903.16
Log Likelihood −364.20 −425.42
Deviance 728.41 850.84
Num. obs. 577 692

Table 3: Development Continuation Decision

Clinical trial stage

There are four phases in the clinical trial stage: Phase I, II, III and FDA filing, denoted
by k = 1, · · · , 4, respectively. I focus on firms’ decisions whether to continue development
from Phase I to II and treat everything else exogenous. At every period t, new firms enter
Phase I. Each firm draws its drug quality qi from quality distribution Ft(·). I allow Ft(·)
evolves deterministically. I assume firms do not observe not only others’ draws but also
their own draw of quality of the clinical trial stage and only knows its distribution and how
it evolves. Once drug j is launched, qj becomes public information. The number of firms
to enter Phase I follows Poisson distribution with rate λ0t. After the entry, firms have to
wait certain time to complete Phase I. The time to required for Phase I is assume to follow
an exponential distribution with rate λ1 and thus the process that a firm’s completion is
Poisson. An implication of the Poisson process is memoryless property, i.e. remaining
expected duration for the completion does not depend on how much time has elapsed
already. This assumption, though unrealistic, greatly reduces required state space, since
firms do not have to track how many periods other firms have waited and only have to
track the number of the firms conducting Phase I. When the Poisson clock ticks, firm i
draws private shocks (εoutit , ε

in
it ) and decides whether to continue (ait = 1) or discontinue

(ait = 0) its project in the next period. This decision is done at the end of each period
after state is realized. If ait = 0, firms terminates the development and gets εout. I assume
εoutit and εinit are independently and identically distributed (i.i.d.) Type-1 extreme value
with cumulative distribution function exp(− exp(−ε/σε)), where σε is the scale parameter.
If ait = 1, firm incurs cost clt at the period and moves to Phase II at the beginning of the
next period, where subscript l denotes one of three firm sizes FS = {small,middle, big}.

From Phase II, everything is exogenous. The time required for each k 6= 1 follows
an exponential distribution with rate λk. At the end of each stage k = 2, 3, 4, firm drops
out from the clinical trial with probability 1− ρklt due to a scientific reason. I allow ρklt
for each k to vary across three firm sizes and decades to match the data better. Let yi
denote a binary variable indicating firm i succeeds its clinical trial or not. I allow any
correlation between qi and yi. Since no firm observes quality of drugs under development,
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the conditional distribution Ft(·|y = 0) is irrelevant for the entire game (as explained
soon, the profit only depends on marketed drug competitors). So, I am agnostic about
Ft(·|y = 0), and with an abuse of notation, let Ft(·) denote Ft(·|y = 1). If firm passes all
the phases, it moves to market stage launches the drug and its quality becomes public.

Market stage

Utility for a consumer i from drug j is given by

uijt = α ln pjt +Xjtβ + qm(j) + ξjt + εijt,

where m(j) is j′s molecule. After patent of brand drug j expires, generic firms enter the
market and sell the same molecule drug m(j). Characteristics Xjt include (1) a brand
indicator, (2) dummy variables indicating first four years after the entry, which is meant
to capture gradual share taking. Drug quality qm(j) is estimated as a molecule fixed effect,
since the quality considered here is time-invariant drug-specific characteristics which is
constant whoever sells it. ξjt is a market shock and an idiosyncratic shock εijt follows
type-I Gumbel distribution.2 Utility from outside option is normalized as ui0t = εi0t.
Consumer i choose option j ∈ {0, 1, · · · , Jt} in period t if uijt > uij′t for all j′ 6= j.

On the supply side, I assume a Nash equilibrium in strategic price setting for differen-
tiated goods. Let me denote by πft the variable profit of multi-product firm f in market
t. In the clinical trial stage, I have not addressed firm heterogeneity of incumbency yet
and treat all firms as identical new entrants. Still, I allow for multi-product ownership
in the market observed in data and these firms maximize total profits. Firm f selling
products j ∈ Fjt maximizes its profit:

πft = max
pjt

∑
j∈Fjt

(pjt −mcjt)msjtMt, (1)

Following Dubois et al. (2022), I assume generic firms set competitive prices. Marginal
costs mcjt and market level shock ξjt are i.i.d random variables following probability

distribution Fmc
jt and F ξ

t , and realized before price setting each period. Let πjt(qt, Xt)
denote j′s equilibrium profit given quality vector qt ≡ {qit}nt

i=1 and characteristics vector
Xt ≡ {Xit}nt

i=1 where nt is the number of drugs at period t.

Continuation value, State and Equilibrium

Since period payoff πjt and many factors in the clinical trial stage are time-variant, the
strategy and the equilibrium are also non-stationary. Since a firm’s action is a simple
binary discrete choice, a strategy is characterized by a cutoff strategy µlt : St → {0, 1} such
that ait = 1 if and only if µlt(st) ≥ εoutit − εinit . Using the logit formula, firm’s conditional
choice probability (henceforth, CCP) to take ait = 1 under strategy µ, denoted by Ψ(·),
which is the probability that a firm will play action ait at state sit before observing

2In order to capture flexible substitution pattern, I am considering nested logit error and random
coefficient specification. Especially, in this specification, the model does not predict that generic entry
of molecule m takes share of the brand-name drug of the same molecule. Therefore, when calculating
expected profits used in the clinical trial stage, I assume that after patent expiration the drug exits from
market, earns zero profits and generic drug immediately enters the market.
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realization of (εinit , ε
out
it ), is given by

Ψ(µlt(st)) =
exp

(
µlt(st)
σε

)
1 + exp

(
µlt(st)
σε

) . (2)

Given the opponents’ (symmetric) strategy µ(s) = {µlt(s)}∞t=0,l∈FS, continuation value of
firm j completes Phase I at t is given by:∫ ∞

−∞
V

Ψ(µ)
lt (st, q)dF

q
t (q)− clt + εinit ,

where V
Ψ(µ)
lt (st, q) =

( ∏
k=2,3,4

ρklt

)
EΨ(µ)

[
t+τ+Ti∑
m=t+τ

βmπm(qm,Xm)

∣∣∣∣∣ st
]
,

where s is a state detailed below and Ti is remaining duration of patent protection after
market launch, which is stochastic and assumed to be i.i.d..3 The expectation in the
second line is taken over (1) time required for clinical trial τ (2) iid static variable (mc, ξ)
(3) T which itself is iid but affects other future market state variables (4) market state
variables (q,X) whose evolution is determined in equilibrium. In the clinical trial stage,
I assume firms only track (or observe) the number of firms in each phase (nkt)

4
k=1 but

not year other firms enter in Phase I and their firm sizes, which actually affect their
own profitability in market. Other firms’ strategy µ affects state evolution, and thus, the
expectation uses CCP Ψ(µ). In this sense, the environment is dynamic game even though
firm’s choice is only once, since past and future strategy other firms take is payoff-relevant.
If other firms use strategy µ′, firm i’s optimality implies

µlt(s;µ
′) =

∫ ∞
−∞

V
Ψ(µ′)
lt (st, q)dF

q
t (q)− clt. (3)

Since market states (q,X) are vectors of continuous variables and thus very high-
dimensional, it is almost computationally infeasible to solve the model if I keep the dis-
tribution as it is. Therefore, I assume firms only keep track of the following moments of
the state: (1) the highest effective quality which equals maxj{qm(j) +Xjβ} for each brand
and generic drugs (2) the number of brand and generic drugs (3) the sum of effective
quality of all drugs for each brand and generic drugs (4) quantile statistics of drug age,
which is not directly relevant with static profits but needed to calculate evolution of the
other moments. To distinguish from the genuine state variables, I call the moments plus
(nkt)

4
k=1 moment-based state, denoted by θt = θ(st).

The equilibrium concept I consider is a non-stationary version of MME proposed by
Ifrach and Weintraub (2017).

Definition 1. Non-stationary MME comprises a continuation strategy µt(θ) that satisfies
the following conditions:

(1) Firm strategy µ satisfies the equilibrium condition:

µlt(θ) =

∫ ∞
−∞

V
Ψ(µ)
lt (θt, q)dF

q
t (q)− clt (∀t, l, θ)

3Usually, companies register their developing drugs to patent before FDA approval, and thus they
have much shorter years of market exclusivity than 20 years after FDA approval. Yet, some drugs are
approved to extend its patent protection, so the duration is highly random.

12



(2) The perceived transition kernel is given by:

P̂µ = ΦPµ

where P̂µ is the transition kernel of the moment-based state when firms use strategy

µ, Pµ is that of the underlying state, and Φ is an operator such that P̂µ approximates
the process of the moment-based state, Pµ.

The non-stationarity complicates the computation of the equilibrium. I describe the
algorithm in the counterfactual section. Let me denote EVlt =

∫∞
−∞ V

Ψ(µ)
lt (θt, q)dFt(q),

which is equilibrium expected profit, for the notational simplicity.

Discussion

Interpretation of clt— An interpretation of clt needs caveats. First, the cost term captures
the expectation of all possible expenses that will be paid until the end of the production,
except for the marginal costs. This will include not only clinical trial costs of Phase II
and III but also costs associated with application to FDA approval, market entry costs
and fixed costs of production.

Second, I do not explicitly incorporate the disqualification of drug safety which should
have determined 1− ρ1, and instead allow all firms to make continuation decisions about
the development. This point is also related to the selection issue I argue next. If firm
have some knowledge about their own drug quality, these firms are no longer identical
and optimal continuation probability should be increasing in their posterior. Therefore,
in the current model, an estimate of clt also reflects overall disqualification rate of Phase
I. However, this assumption may not be that harmful for counterfactual results unlike
it may sound, if I properly estimate σε. This is because σε determines how much firms
response to the continuation value and the continuation cost, and thus, even if some firms
face prohibitively expensive costs due to the safety issue and does not response to the
change of the continuation value at all, my estimate takes these firms into account overall.
Third, I allow the continuation cost to vary over time. The cost shift may reflect costs
associated with quality update of developed drugs and/or other factors such as labor costs
and legal burdens.

Firm information about its own quality— In the model, firms are assumed to have no
additional information about their own drugs under development except for the prior
distribution. This assumption is unrealistic and abstracts away the important selection
issue discussed in the conclusion. To incorporate the selection of high quality drugs, it
will be natural to assume a firm to observe noisy signal of its quality. Variance of the
noise term will be identified from the failure rate in the late phases.

5 Estimation

In this section, I present estimation strategy. The estimation takes two steps. In the
first step, I estimate demand parameters and back out marginal cots. In the second step,
profits calculated from the demand estimation are plugged into the clinical trial stage and
using forward simulation technique I estimate dynamic parameters ct and ft(q).
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Demand and Period competition

I estimate demand parameters using aggregate market share and Berry’s (1994) inversion
provides the linear relationship

ln(msjt)− ln(ms0t) = α ln pjt +Xjtβ + qm(j) + ξjt,

where msjt is j′s market share at period t.4

Following Dubois et al. (2022), I construct instruments in a sprit of BLP-type IV. In
particular, in the IV estimation, I use the following variables as instruments for pjt: for
each drug j in each year t, the number of products in j’s ATC-4 class and the number
of drugs in novel ATC-4 classes including DDP-4, GLP-1 and SGLT2, as these classes
were getting more and more popular after the introduction around 2010. Since these
variables indicate the competitiveness of markets, price will correlate with them, while the
independence from ξjt is valid if the serial correlation of ξjt disappears between sufficiently
large year gap as entry might correlate with ξjt.

Marginal costs is estimated from the first-order condition of equation (1) for every
market t:

mct = pt + (Ωt � St(pt))−1mst(pt), (4)

where Ωt is ownership matrix at period t and Sti, j(pt) = −∂msjt/∂pit. Since each mcjt
and ξjt are non-parametrically identified and estimated, estimated empirical distributions

of m̂cjt and ξ̂jt are consistent estimators of Fmc
jt and F ξ

t . I allow Fmc
jt to differ across brand

and generic drugs.
Once demand parameters and marginal costs are estimated, I can compute profits π for

hypothetical market structure. The algorithm to compute Bertrand NE follows Morrow
and Skerlos (2011), in which prices are going to be iteratively updated by using the first
order condition with an initial guess and it usually takes a few seconds.

In the dynamic estimation, I forward simulate the life-time expected profits of entering
market, EVlt for all t and l. This needs to repeatedly compute Bertrand NE under a huge
number of hypothetical market structures (with different drugs, qualities, mc, xi, and
year.) It is almost infeasible to run Morrow and Skerlos’s (2011) for every time. Instead,
using a polynomial function, I approximate Bertrand NE profit of firm i by i′s information
(qi, Xi,mci, ξi) and several statistics of market level distribution of these variables. I
carefully distinguish between state variables (q,X) and iid static variables (mc, ξ) and
use the latter information as much as possible to make the state space compact. To this
end, I simulate more than 200 thousand of firms’ profits under different market structures
with sufficient variation of these variables, and the approximation achieves R2 ≈ .97.

Dynamic model: Quality update and Cost of innovation

A set of parameters to be estimated in the dynamic game part is clt, Ft(q) and σε. I
parameterize Ft(q) as follows:

Ft(q) = Φ

(
q − (γ0 + γ1t96)

σ2
q

)
,

4As MEPS dataset contains individual prescriptions, expenditures, and detailed individual charac-
teristics, it would be better, in terms of efficiency gain and strong IV, to use individual data directly
following Berry et al.’s (2004) approach.
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where t96 = t − 1996 and Φ(·) is the cumulative distribution function of the standard
normal. Flexibility to allow for clt needs a careful examination. The parameter σε is
estimated as a correlation between outcome ait and expected profit EVlt conditional on
cost. This means that EVlt needs to be more flexible than clt and the variation of EVlt
within the same cost must be sufficient. Through examining several specifications, I decide
to use cl. I estimate the set of parameters, Θ = {Θc, Θq, σε} = {{cl}l∈FS, {γ0, γ1, σq}, σε},
by maximum likelihood. I set a reference year 1996 because it is the earliest sample in
my dataset. Note that since I do not consider he selection issue of quality, a quality
distribution of observed market drugs estimated demand estimation is unbiased. So, I
first estimate Θq directly from the estimated q̂, denoted by Θ̂mrk

q . However, to make the
clinical trial data fit better, I allow these parameters to change in the final estimation.
This is particularly important for recent clinical trial observations in which no drug has
ever approved and thus no quality estimate is obtainable.

To estimate these dynamic parameters, I use a two-step estimation method which is
de facto standard in the dynamic game estimation literature (Bajari et al., 2007; Aguir-
regabiria and Mira, 2007; Pakes et al., 2007; Pesendorfer and Schmidt-Dengler, 2008). In
the first step, I estimate CCP Ψt directly from the data. I use a logistic regression with
flexible regressors. To accommodate the non-stationarity of the value and policy function,
I allow the CCP to vary across years in the estimation. I also estimate parameters govern-
ing state transitions, which contain duration rates (λk)

4
k=1, the probabilities passing each

phase (ρk)
4
k=2 and an empirical distribution of the duration between market entry and

patent expiration. In the second step, I compute V Ψ
lt (st, q) using forward simulation, in

which I simulate the evolution of the state st (actual state not moment-based state) and
action ait by drawing from the choice probabilities Ψ̂t and the state transition process.
Each simulation sequence starts from the actual state st in the data and fix entry quality
q. During simulation, some other firms enter the market with some qualities. I draw
them from Ft(q; Θ̂

mrk
q .). In addition, to simulate years after the last sample period, I use

the value of the last year. For every simulated path, I can compute all the period payoff
and thus discounted profits of the path. Then, V Ψ

lt (st, q) is computed simply by summing
them for all the paths

V̂ Ψ̂
lt (st, q) =

1

R

R∑
r=1

T r∑
k=t

βk−tπ(srk).

Substituting the simulated expected value into the optimality condition (3) and CCP (2)
yields the probability of action:

Pr(ait = 1|st) =
exp

(
ÊV lt(st)−cl

σε

)
1 + exp

(
ÊV lt(st)−cl

σε

) ,
where ÊV lt(st) =

∫ ∞
−∞

V̂ Ψ̂
lt (st, q)dΦ

(
q − (γ0 + γ1t96)

σ2
q

)
The integration part is computed following Tauchen’s (1986) method, and grid points of
qt are taken according to the Gauss-Hermite quadrature. Since the weights on each grid
changes as Θq change, I cannot use the Gauss-Hermite quadrature directly here. The
continuation actions and estimated quality distribution of marketed drugs constitute the
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likelihood function. Thus, the log-likelihood function can be written as

l(Θ) =
∑
t

∑
i∈It

[ait ln Pr(ait = 1|st) + (1− ait)(1− Pr(ait = 1|st))]︸ ︷︷ ︸
clinical trial continuation decisions

+
∑
t

∑
j∈Jt

φ

(
q̂j − (γ0 + γ1t96)

σ2
q

)
︸ ︷︷ ︸

marketed drug quality

,

where It is a set of firms that face continuation choice at year t and Jt is a set of marketed
drugs that entered Phase I at year t.

Identification

The distribution of quality F q
t (·) is identified from the data of marketed drugs. Since the

selection issue is abstracted away so far, observed quality is consistent with the underlying

distribution. Given the identification of F q
t (·), expected profits

∫∞
−∞ V

Ψ(µ′)
t (st, q)dF

q
t (q) is

also identified from demand parameters. Once the expected profits from continuation are
identified, the problem is boiled down the usual logit estimation, in which cost param-
eters and the scale of the error term (εin, εout) are identified since the coefficient on the
expected profits is fixed as 1. The cost parameters are pinned down average continuation
probabilities, while the scale parameter is identified from the positive correlation between
outcome probability and the expected profits conditional on costs. The latter is numeri-
cally equivalent to the inverse of a coefficient attached to the expected profits under which
the scale parameter is normalized as 1. In the estimation, however, there is efficiency gain
from estimating F q

t (·) using not only estimated marketed drug quality but also clinical
trial decisions.

Discussion

The model is nonstationary by nature, since the market size and the exogenous entry rate
are time-dependent. This means year itself is a state variable. Basically, each year, one
has an only single observation, the data are very sparse compared to the huge state space.
This implies the difficulty to estimate the CCP precisely, and it is Igami’s (2017) and
Igami and Uetake’s (2019) motivation to avoid using the standard two-step estimation
method. They instead use finite-period models and the full-solution method, which fill in
the gap of the sparsity by solving policy function directly. However, in my environment,
their full-solution approach is inappropriate and infeasible. It is inappropriate, because
there is no natural terminal period. It is infeasible, because the number of possible states
is too many to solve backward. Thus, I follow the two-step estimation approach and
fill states of no observation by estimating CCP using polynomial structure, which is a
standard approach many application studies take.

One possible remedy for the finite sample bias of CCP estimation is proposed by
Aguirregabiria and Mira (2007). They recommend to replace imprecisely estimated CCP
by policy function after estimating parameters using the CCP. The policy function can
be obtained by solving the model with parameters estimated using CCP. Furthermore,
there are benefits to repeat this iteration until convergence.

16



6 Results

Demand parameters

Table 4 presents estimates of the demand estimation. The IV estimate in the second
column shows more elastic price sensitivity than the OLS estimates in the first column.
Corresponding own- and cross-price elasticity are −1.103 and 0.031, respectively. Com-
pared to the literature, these values are smaller in absolute levels (for example, −1.430 and
0.142 in Dubois et al. (2022)). Also, a coefficient on the brand dummy is estimated as neg-
ative, but the literature robustly shows it is positive. A likely reason is that instrumental
variables do not work well. Even though the F-statistics shows sufficient relevance of IVs
(Stock and Yogo, 2002), the estimated coefficients on the IVs in the first stage regression
are mostly positive, which is an opposite sign because these IVs are supposed to proxy
degree of market competition. I scrutinize the data and find that counter-intuitively firms
did not decrease, or even increased, prices after the patent expires, even controlling year
and firm fixed effects. This might be the case in the reality interestingly but potentially
indicates a problem in constructing price variable.

Model: OLS IV

log(Price) -0.4204 (0.1042) -1.013 (0.2190)
Brand Dummy -1.512 (0.2587) -0.9574 (0.2978)

Fixed-effects
First 5 Years After Entry Yes Yes
Molecule Yes Yes

Fit statistics
R2 0.44289 0.39529
Observations 649 649
F-test (1st stage), log(Price) 32.326

Heteroskedasticity-robust standard-errors in parentheses

Table 4: Demand parameter estimates
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(a) Estimates of quality distribution (b) Quality update

(c) Market share, price and quality (d) Estimates of marginal costs

Figure 3: Estimates of unobserved quality and maginal costs

Drug quality for each molecule is non-parametrically estimated as fixed effects. The
result is presented in Figure 3. Panel (a) shows its histogram, and Panel (b) presents
estimates along the year of market entry, colored by ATC4 classes. The estimates of
quality distribution reveals a strong increasing pattern, mostly coinciding with different
therapeutic classes. The OLS estimates regressing quality on Phase I entry year5 are used
in forward simulation as quality distributions of competitors. The estimates of quality
successfully capture an intuitive sense of what quality is intended to measure. That is
high-quality products are well sold even if prices are high. Panel (c) of Figure 3 depicts
the situation, where larger dots are higher quality.

Average of estimated marginal costs for both branded and generic drugs is displayed
in Panel (d) of Figure 3.

Period profits are derived from Bertrand NE. Polynomial approximation of log of the
profit is very successful using not only ones own information such as quality, marginal
cost and market shock ξjt but also information regarding market distributions of these
variables such as maximum and mean for each brand and generic drugs.

Dynamic parameters

The estimate of conditional choice probabilities is presented in Table 5. Similar to Table
3 in section 3, the estimates of coefficients on the number of competitors in each phase

5Due to the omission of data on when marketed drugs entered Phase I in Pharmaprojects, I utilize
a time frame of seven years prior to FDA approval. This duration represents the sample average years
taken from Phase I to approval for drugs with recorded entry dates.
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and market are overall negative without statistical significance. I also include maximum
quality value for both branded and generic drugs in market. These variables have also
negative impacts.

Model 1
# Phase1 −0.04 (0.06)
# Phase2 0.05 (0.12)
# Phase3 + Registered −0.03 (0.11)
# Market −0.15 (0.17)
max quality brand −0.34 (0.96)
max quality generic −0.00 (0.30)

Fixed-effects
Every three year Yes
Firm size Yes

Fit statistics
Log Likelihood −422.34
Num. obs. 692

Table 5: CCP: logit on the continuation choice

Figure 4 compares actual and fitted values of continuation probability for each year.
The estimated CCP captures the same trend of the actual data. For the policy function
after the last year of the sample, I use the one of the last year.

Figure 4: CCP fitting

I fix discount factor β = 0.9. Expected value EVlt calculated by the simulation
is presented in Figure 5 panel (a), where the quality distribution used in the figure is
estimated only from marketed drugs. The red line fixes the success rate ρ2 ∗ρ3 ∗ρ4 = 0.15
to see roles of other factors more clearly. Note that the only difference between firms with
different sizes is this rate in my model. Expected discounted profits decrease in the first
decade and increase in the last decade. Two factors are likely to govern this trend. On
the one hand, as the years go on, more and more high-quality drugs enter the market
and the profitability of newer drug decreases fixing quality. On the other hand, quality
distribution improves over time, expanding market size of inside share. Even though mean
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of quality distribution increases linearly, expected profits can increase in a convex form,
due to the logit demand. Therefore, the latter force exceeds the former in late years. By
adjusting success rates for each firm size, I obtain EVlt for each firm size.

(a) Θ̂q = Θ̂mrkq (b) Θ̂q = Θ̂Fullq

(c) Quality update: solid Θ̂q = Θ̂Fullq

dashed Θ̂q = Θ̂mrkq

Figure 5: Simulated expected life-time profits

Table 6 provides estimates of the dynamic parameters. The first column presents the
full estimation of Θ, while the second column’s estimates are the result fixing Θq = Θ̂mrk

q .

The likelihood ratio test rejects the null that Θq = Θ̂mrk
q with a significance level of 0.05.

Figure 5 panel (b) shows corresponding expected profits under the estimates of full model
Θ̂Full, and panel (c) compares between means of quality distribution under Θq = Θ̂mrk

q

and Θq = Θ̂Full
q . MLE adjusts mean quality of late years downward to match clinical

trial data better. This adjustment is critical for welfare evaluation in counterfactual
experiments. Estimates of continuation costs for small and middle firms are negative.
Since costs should be positive, the underestimation suggest that σε is too large. The last
column of Table 6, the result when fixing σε to be 1, shows much higher and positive
cost estimates. As σε captures the degree of positive correlation between EVlt and the
outcome ait, this implies either that the variation of EVlt is too small or that the model is
too much misspecified and some specification adjustments will be necessary. In order to
obtain valid results of welfare analysis in counterfactual simulation, reliable estimates of
σε is crucially important, since it governs how much firms reduce R&D investments under
price regulation. A more trustworthy identification strategy about σε must be required,
which is left for future work.
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Full Fix Θq Fix σε, Θq

γ0 1.48 (0.247) 1.554 1.554
γ1 0.081 (0.015) 0.114 0.114
σq 1.655 (0.161) 1.633 1.633
c small -4.483 (2.882) -5.814 (3.221) 1.869 (0.131)
c middle -2.649 (2.649) -3.317 (3.462) 4.186 (0.173)
c big 6.173 (2.787) 9.74 (1.852) 11.423 (0.182)
σε 8.635 (4.326) 11.496 (3.787) 1

Fit statistics
log-likelihood -519.225 -606.413 -684.409

Table 6: Dynamic parameter estimates. Figures are in .1 billions of dollars. Standard
errors presented in parentheses do not account for static estimation in the first stage
and simulation errors of forward simulation. These values represent the lower bounds of
correct standard errors.

7 Counterfactual simulation and Discussion

In this section, I discuss welfare implications of IRA’s price negotiation. To mimic antic-
ipated regulation form, I consider a counterfactual scenario where a branded drug which
achieves the biggest revenues in the market is imposed a price cap. I set the price cap as
10% decrease of unregulated oligopoly price. First, I present results ignoring strategic in-
teraction in the clinical trial stage. More specifically, instead of computing equilibrium of
the entire dynamic model under counterfactuals, I recompute static equilibrium under the
regulation with and without new product entry. Then, I calculate the continuation proba-
bility in the clinical trial using modified expected value computed by multiplying average
static profit change rate with the original EV . Table 7 presents the result of change rates
of total consumer surplus, firms’ R&D continuation probability and consumer surplus
leaving R&D decision unchanged.

year Consumer Surplus Cont. Prob. CS w/o R&D response
2000 0.059 -0.028 0.071
2005 0.038 -0.028 0.043
2010 0.016 -0.030 0.019
2015 0.015 -0.035 0.018
2020 0.008 -0.026 0.010

Table 7: Counterfactual simulation

In the following, I first present the computation algorithm to solve the model, second
explain measure of consumer surplus and offer some theoretical considerations.

Solving the model is not a simple task. Since the model does not have a recursive
structure due to non-stationarity and multiple stages, simple iteration algorithms such as
value or policy function iteration approach do not work here. As such, I use the following
algorithm. The algorithm solve value functions backward and thus avoids to conduct
forward simulation from each state in Phase I to the end of patent life.
Algorithm:
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1. Randomly pick up M state points (not moment-based state) to roughly cover a
reasonably wide range of state space. Keep M states in memory until the end.

2. Randomly draw mc’s and ξ’s for every firms and every year and calculate firms’
static profits under states picked in step 1. Repeat this sufficiently many times
enough to integrate out non-state random variables, mc and ξ. Take the average
of simulated profits for each branded drug in each state. Note that the expectation
has to be taken before taking log. Then, approximate log of the expected profits of
branded drugs by a flexible polynomial function of both moment-based states and
a year variable. This serves as the value function of the last year of the support of
patent protection, denoted by WT̄ (θ, t). Note WT̄ (θ, t) does not depend on policy
function.

3. Guess an initial guess of equilibrium CCP function Ψ0(θ, t).

4. Given guessed CCP ΨR(θ, t) in the previous iteration R, simulate one-period state
transitions k times from K states picked in step 1. Keep M ×m state realizations
in memory until the update of ΨR(s). Let sji denote ith simulated state among m
rooted from sj with j = 1, · · ·M.

5. Update value functions backward using simulated state transitions as follows.

a. In the market stage, an expected flow profit Eπ(s) is given WT̄ (θ, t). The
probability to remain in the market in next year from τ is given by pτ =
FT (τ+1)−FT (τ)

1−FT (τ)
. Calculate the average of the continuation value of τ -th year in

market: W̃τ (sj) = Eπ(sj)+β
[
pτ 1

m

∑m
i=1W

R
τ+1(sji) + (1− pτ ) 1

m

∑m
i=1 W

R,r
τ (sji)

]
,

whereWR,0
τ (·) is an initial guess. Estimate polynomial approximationWR,r+1

τ (sj)
using M data points of W̃τ (sj). Repeat the iteration until convergence. Con-
vergence is evaluated using coefficients of polynomial functions.

b. In the clinical trial stage, an expected flow profit is 0. The probability to
remain in the same phase in next year from phase k, denoted by pk is given
by Poisson distribution, which is invariant how many years has passed in each
phase. Calculate the average of the continuation value of Phase k: Ṽk(sj) = 0+

β
[
pk 1

m

∑m
i=1 V

R
k+1(sji) + (1− pk) 1

m

∑m
i=1 V

R,r
k (sji)

]
, where V R,0

k (·) is an initial

guess (if k = 4, V R
k+1 = WR

1 ). For Phase 1, pk is fixed to be 1, so that no

iteration is necessary. Estimate polynomial approximation V R,r+1
k (sj) using M

data points of Ṽk(sj). Repeat the iteration until convergence. Convergence is
evaluated using coefficients of polynomial functions.

6. Using Phase 1 value V R
1 (sj), calculate CCP ΨR+1(·). If coefficients of V R

1 (·) con-
verges, then the iteration stops. If not, go back to step 4.

What level and what form of price regulation is optimal? Suppose that policymakers
are primarily concerned with discounted value of consumer surplus and are able to commit
future policy sequence. Then, a planner’s problem is given by:

max
{pt(ht)}∞t=0,h∈H

E
∞∑
t=0

βt ln

(∑
j∈Jt

exp{W t
j (pjt, qj)}

)
,

subject to
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(IC static) pt satisfies Bertrand NE for non-patented drugs

(IC dynamic) Probability distribution of new entry of qj must be supported by
dynamic equilibrium,

where W t
j is mean utility from good j at time t, ht is a history of a state realization until

time t and H is a set of all possible state realizations.
More generally, policymakers do not have to confine their attention to price regula-

tion about innovation policies. Among countless alternatives of forms and magnitude of
policy design, what is optimal? This question is unquestionably difficult to answer. How-
ever, some remarks are worth making. First, it would be a better approach to use some
revelation-principle type argument to transform the extremely challenging question into
well-defined optimization problem with more restricted domain of policy choices. As mul-
tiple policies will achieve the same outcome, it is redundant to search from unboundedly
huge set of policies. Second, firms R&D decision depends only on expected values EV as
long as firms are risk neutral. This observation should play a crucial role to find what kind
of revelation-principle type argument is applicable to this particular environment, since
(IC dynamic) condition in the planner’s problem can be converted to planner’s direct
choice of EV and CCP. Third, appropriately employing duality will be a key. Consumer
welfare faces inter-temporal tradeoff in terms of current price and future quality, and it
might be able to consider some kind of indifference curve to compensate each other in-
dependently from firms’ decision. It would be easier to choose expected values for firms
given the indifference curve. Lastly, in terms of the implementation of solution to the
planner’s problem boiled down by revelation principle, price regulation would be more
flexible than other innovation policy such as change of patent duration but hard to com-
mit entire future contingent levels. The lack of commitment will be detrimental for firms’
R&D incentive. Fining a way that is practically implementable and able to commit will
be also a challenging task.

8 Concluding remark

In this paper, I develop a simple model of R&D investment in the pharmaceutical in-
dustry. The model is estimated using the standard two-step estimation method in the
dynamic game estimation literature with forward simulation. The estimated model is
leveraged for counterfactual experiments, examining the potential impacts of anticipated
price regulation in the U.S. on both R&D and consumer welfares. Additionally, I propose
a computation algorithm to facilitate solving the dynamic model in counterfactual simu-
lation. I also provide a quick argument to approach an optimal policy design problem of
innovation.

My analysis has some limitations. First, my dynamic model does not account for the
selection of high-quality drugs during clinical trials. Throughout development processes
firms must observe signals of drug quality, and approved drugs are likely to have relatively
higher quality than a prior distribution. Neglecting the selection aspect leads to an
overestimation of the underlying quality distribution, consequently inflating the downside
of price regulations. Moreover, the analysis overlooks a crucial advantage of a patent
system as an innovation policy over direct subsidies, namely its ability to screen out
higher-quality inventions. Given that the quality or societal benefits of an invented good
are often private information ex-ante and challenging for governments to evaluate, a patent
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system provides an effective mechanism. To address this limitation, I plan to develop and
estimate a model to address this selection issue in the next version. For example, selection
issue under a dynamic game setting is considered in Crawford and Shum (2005b).

Another limitation in this version of the paper is that firms in the clinical trial stage are
treated as entrants without any drugs in the market. However, it is crucial to note that
the pharmaceutical industry is highly concentrated, and global research-based pharma
giants own multiple drugs in the market while concurrently engaging in the development
of new ones. Consequently, this version of the paper does not delve into the relationship
between competition and innovation, which is one of the most important questions in In-
dustrial Organization. An extension to incorporate competition might provide additional
insights to the effects of price regulation and change of patent duration. Incumbent firms,
concerned with potential cannibalization among their own products, may exhibit greater
R&D incentives under conditions of earlier patent expiration or stronger price regulation.
Furthermore, the pharmaceutical industry is characterized by frequent mergers and ac-
quisitions and collaborative development of new drugs, presenting another crucial avenue
for exploration in future research.
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