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Abstract. We define the partial monotonicity parameter (PMP) as the proportion of the

population for which a small increase in an explanatory variable is associated with an increase

in the outcome variable. The PMP is a novel approach useful in three classes of applications:

(1) Even though monotonicity may be the most common predicted relationship among vari-

ables in economics, it is rarely tested in practice because even a small violation causes it to

be rejected. The PMP fills this gap between theory and practice by allowing for estimation

of an interpretable parameter that includes standard monotonicity as a special case. (2) The

PMP generalizes from binary categorizations to continuums some classical properties, such as

a good being normal, and relations, such as inputs being complements. (3) In the presence

of heterogeneous effects, inference on the PMP provides answers to policy-relevant questions,

including whether an increase in a variable would benefit the majority of the population. We

provide results for parametric and non-parametric inference for the PMP, as well as results

for joint inference with average-effect parameters.

Key words. Regression Monotonicity, Heterogeneous Effects, Treatment Effects, Program

Evaluation, Semi-Parametric Regression, Non-Linear Model

1. Introduction

This paper proposes a new parameter, the partial monotonicity parameter (PMP), which

answers the question “For what proportion of the population is a small increase in x associated

with an increase in y?” This question is important in many applications, including program

evaluation, tests of model predictions, heterogeneous treatment effects, and any empirical

analysis in which it is of interest to identify the proportion of the population that would benefit

from, or be harmed by, an increase in x. The PMP also generalizes from binary categorizations

to continuums some classical properties in microeconomics, such as a good being normal, and

relations, such as inputs being complements.

Let (X,Y ) be a random vector drawn from a population of interest, and for the sake of

terminology suppose a larger value of Y is always “better.” Let the relationship between X

and Y be modeled as

Y = f(X) + ϵ, (1.1)
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where E(ϵ) = 0, X has support X , and for simplicity a causal interpretation of f holds.1

When X is one-dimensional, we define the PMP as δ+ := P [f ′(X) > 0], the proportion of the

population for which a small increase in X is associated with an increase in Y .

This simple framework can be generalized in various ways when X is multi-dimensional.

For the explanatory variable of interest xj and corresponding partial derivative fxj
:= ∂f

∂xj
,

we consider the parameter δ+xj
:= P

[
fxj (X) > 0

]
, which allows for multiple variables to

drive heterogeneity in the sign of fxj . We also consider parameters of higher-order partial

derivatives of f . In Example 1 below, we consider a bivariate production function f with

capital (k) and labor (l) as inputs and define multiple partial monotonicity parameters of

interest: δ+ii := P [fii(K,L) > 0] for i ∈ {k, l} to capture partial increasing returns in in-

dividual inputs; δ+kl := P [fkl(K,L) > 0] to capture partial complementarity of inputs; and

δ+k;l := P [fk(K,L) > 0, fl(K,L) > 0] to capture partial monotonicity in a multivariate sense.

Extending these definitions to an arbitrary number of inputs is straightforward.

A separate generalization of the PMP is to consider joint probabilities of the signs of deriva-

tives of different orders. For example, the production function in some industries is predicted

to exhibit decreasing positive marginal returns, which corresponds to the function being both

monotone and concave. The extent to which this prediction holds could be measured by the

parameters δi;ii− := P [fi(K,L) > 0, fii(K,L) < 0] for i ∈ {k, l}. Similarly, on a more aggregate

level, most growth theories predict monotone concave convergence dynamics.

An important feature of these generalizations of PMP is that the parameter space is always

the one-dimensional unit interval, [0, 1]. Specifically, the dimension of the parameter space

of the non-parametric PMP estimator we propose does not increase with the dimension of X
or the number of events included in the joint probability. Few non-parametric estimators in

econometrics have this convenient property, which makes reporting and interpreting results

relatively simple and concise.

Many theories in economics predict monotone relationships between variables. However,

monotonicity is rarely tested by empiricists because it is viewed as too strict in practice: A

theory that is mostly supported by the data could be rejected because of a minor violation

of monotonicity arising from selection, measurement error, competing effects, or a violation

of an assumption by a small subgroup. In such cases, one way is to quantify the degree of

monotonicity by performing inference on the proportion of data points in the population such

that a monotonicity constraint holds in a local sense. The PMP fulfills this role and thus

1This assumption could either be satisfied by the nature of the vector (X, ϵ), such as assuming E(ϵ|X) = 0, or

relaxed in an extended model by employing instrumental variables, panel data techniques, and other econometric

methods. As long as an estimator of f can be interpreted causally, the same holds for the estimator of the PMP.

If the required assumptions cannot be satisfied for a causal interpretation of f , the PMP still has a predictive

interpretation.



3

reconciles the asymmetry between a prediction of monotonicity and the common practice of

testing a weaker prediction, such as the average effect being positive.

In the presence of heterogeneous effects, it has long been recognized that estimators of av-

erage effects, such as individual ordinary least squares (OLS) coefficients, are sensitive to a

minority’s strong positive effect dominating a majority’s weak negative effect. Although em-

piricists commonly add polynomial and interaction terms to model heterogeneous effects, we

are not aware of any paper that performs inference on a non-binary generalization of mono-

tonicity. Further, the polynomial terms are often added in an ad hoc manner.2 Reporting

results of the combined fit of the polynomial terms in an interpretable way essentially requires

a graph of the derivative of the fit and confidence band, as well as some representation of the

marginal density of X (e.g., a rug plot) for the reader to understand whether a violation of

monotonicity in the fit corresponds to a considerable portion of the population. If heterogene-

ity is driven by other variables (i.e., interaction terms), then fx is multi-dimensional, which

makes it even more difficult to interpret the visualization of the fit and relevant joint marginal

distribution.

In the context of parametric estimation, we make the contribution of providing results for

inference on the PMP using polynomials and interaction terms to capture heterogeneous effects.

The PMP naturally integrates over the joint marginal density of the variable of interest and

interaction variables, and the result can be represented in a single table cell as opposed to

a graph. We additionally provide results for semi-parametric inference. Because of the non-

increasing dimensionality of the PMP, semi-parametric estimation offers a practical alternative

that is just as easy to report as individual OLS coefficients and is root-n consistent.

By abstracting away from magnitude, inference on the PMP captures information that

complements average effect estimators. Similar to the common practice of reporting the mean

and median of a variable, average effects and the PMP together provide a more complete

picture of the regression function being studied than average effects alone. We are the first

to provide joint inference results for parametric and non-parametric frameworks to test the

simple hypothesis that an increase would have a positive average effect and would benefit the

majority of the population.

Relative to current tests of monotonicity, inference on the PMP allows an empiricist to

estimate a parameter rather than perform a test based on a statistic that is difficult to interpret

directly and is useful only to generate a p-value. The output from current tests of monotonicity

2A common approach is to add terms as long as they are significant. If an insignificant coefficient on a

polynomial term has a wide confidence interval, that could provide important information for inference, e.g., for

the confidence interval of the PMP. However, global polynomial terms of high degree often have high standard

errors in practice. These ad hoc approaches thus lead to disadvantages compared with semi-parametric methods

that avoid global polynomials.
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is analogous to the hypothetical situation in which OLS regression would report only the p-

value corresponding to the null hypothesis that a coefficient is zero, without reporting the

actual estimated coefficient itself.

A test of standard monotonicity based on the PMP can be performed by testing the null

hypothesis H0 : δ
+ = 1. Performing inference on the PMP has an advantage over classical tests

of monotonicity even when the researcher desires a test of standard monotonicity. Although

a failure to reject monotonicity by any test could be due to low power, the PMP is unique:

Because it is a parameter that is directly interpretable, the confidence interval indicates whether

power is likely low. If a confidence interval for δ+ is concentrated around 1, then the failure

to reject H0 is not likely due to low power. In contrast, in general for classical tests of

monotonicity, it would be necessary to perform power analysis to assess whether a failure to

reject is likely due to low power.

The PMP generalizes some classical properties in economics from binary categorizations to

continuums, which allows researchers to perform inference on the extent to which the properties

hold. For example, whether demand for a good increases with additional income depends on

the baseline level of income as well as other consumer characteristics. Partial monotonicity

allows for inference on the extent to which demand increases with additional income, taking

into account the joint marginal distribution of baseline income and consumer characteristics,

and thus extending the binary notion of a good being normal to an index from zero to one.

Similarly, in the multivariate production function of Example 1 below, we explore partial

monotonicity of the cross-derivative in order to perform inference on the extent to which two

inputs are complementary. Underlying these examples are potentially complex relationships

affected by multiple variables, and the PMP can assess the extent to which violations of

monotonicity manifest from the heterogeneous relationships.

We provide results for inference on the PMP that can be applied by techniques as simple

as adding polynomial and interaction terms to a regression. The results apply to OLS, quan-

tile regression, probit and logit, and many other common parametric estimation techniques.

We also derive results for non-parametric estimation of the PMP based on local polynomial

estimation. Implementation of PMP estimation has appealing computational properties and

does not require, for example, quadratic programming for projections. We offer practical ad-

vice to empiricists, as well as a user-friendly R package that implements both parametric and

non-parametric PMP estimation.

Literature review. The paper most closely related to ours is Chernozhukov, Fernández-

Val & Luo (2018), which proposes uniform estimation of the “sorted effect curve,” which

completely represents the range of heterogeneous effects. Chernozhukov et al. (2018) allows

us to construct inference of one-dimensional functions defined on level sets under reasonable



5

smoothness assumptions. For a variable of interest, Z, when the function g := ∂f(X)
∂Z is one-

dimensional, we are able to formulate an inference procedure based on Chernozhukov et al.

(2018). However, their method does not apply directly to multi-dimensional problems and

requires the functional central limit theorem of the original function. In this paper, we relax

this assumption in the analysis of the PMP with application to local-linear estimation. In

addition, the PMP is a scalar that summarizes heterogeneity of the sign of the partial effects

in order to preserve a connection to monotonicity and provide results that can be presented in

a table cell, rather than providing a complete representation of the partial effects.

There is a rich literature on the inference of monotonicity or monotonized functions. See,

for example, the two recent papers Chetverikov (2019) and Fang & Seo (2021) which both

provide uniformly valid and asymptotically non-conservative tests of monotonicity. See also

Du, Parmeter & Racine (2013) and Du, Parmeter & Racine (2021), which propose to constrain

the weights in kernel regression of the data points to achieve the desired restriction. Finally,

see the recent survey on shape restrictions by Chetverikov, Santos & Shaikh (2018).

Assuming a model similar to (1.1), Powell, Stock & Stoker (1989) and Härdle & Stoker

(1989) propose to estimate the average derivative of the regression function, E [f ′(X)]. This

parameter captures similar information to OLS, and does so in a more flexible way (f can be

modeled semi-parametrically). However, like OLS, this average-effect parameter is sensitive to

magnitude and thus misses information on the average sign of the derivative of f , as discussed

in the context of individual OLS coefficients above.

Outline. The rest of this paper is organized as follows. In the next section we present exam-

ples of how the PMP framework is useful in several settings. Section 3 discusses the asymptotic

theory for parametric PMP estimation. Section 4 extends the theory to non-parametric estima-

tion via local polynomial regression, and Section 5 has results on further extensions. Section 6

provides results from Monte Carlo simulations to explore the finite-sample properties of PMP

estimators. Section 7 concludes.

2. Examples

We first introduce some notation that allows for higher-order partial derivatives as well as

joint probabilities. Let X be a random vector drawn from a population of interest and have

support X ⊂ Rk. For f : X 7→ R and j1, j2, . . . , jp ∈ {1, 2, . . . , k}, we use fxj1
xj2

···xjk
:=

∂pf
∂xj1

∂xj2
···∂xjp

. Similarly, we define δ+xj1
xj2

···xjp
:= P

[
fxj1

xj2
···xjp

(X1, X2, . . . , Xk) > 0
]
.

Example 1 (Production functions). It is often important to understand the extent to which

a production function exhibits certain properties that are implied by belonging to classes of

shapes. For example, convexity implies increasing returns to scale. These properties affect the

presence of monopolies, inform policies on subsidies and industry protection, and can explain
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structural differences across industries. Consider a bivariate production function f with capital

(K) and labor (L) as inputs, modeled as Y = f(K,L) + ϵ. The inputs K and L are defined as

being “q-complements” if fkl(k, l) > 0 for all pairs (k, l) ∈ X . We apply the concept of partial

monotonicity to the cross-derivative of f in order to generalize this property to accommodate

production functions in which the inequality holds for some pairs (k, l) ∈ X but not necessarily

all: δ+kl := P [fkl(K,L) > 0] . For example, suppose each worker can operate up to, but no more

than, two machines simultaneously. In this case, we might expect fkl to be strictly positive

over the lower half-space {(k, l) ∈ R2 : l < 2k} but not over the upper half-space counterpart.

On a more basic level, we might seek to check that the production function is increas-

ing as the levels of inputs increase. We thus consider the following parameter: δ+k;l :=

P [fk(K,L) > 0, fl(K,L) > 0] . Although in theory monotonicity is a fundamental property

of production functions, in an empirical setting f̂ might be biased in a way that monotonicity

is violated over part of X . For example, productivity or product quality could be unobserved

and correlated with base levels of capital and labor. Inference on the PMP can be employed

to check whether the data generating process is close to satisfying the fundamental property

of monotonicity.

The above examples extend trivially to higher dimensions: For a production function

f : Rn → R with n inputs and i, j ∈ {1, . . . , n}, we define δ+ij := P [fij(X) > 0] , δ+1:n :=

P [f1(X) > 0, . . . , fn(X) > 0] .

Example 2 (The policy maker’s null). Policy makers might be interested in testing whether

an increase in a policy-influenced variable x would have a positive average effect and would be

beneficial for the majority of the population. Let β := E [f ′(X)] be the average effect. We can

then specify the policy maker’s null hypothesis in terms of δ+ and β as follows:

H0 : β ≤ 0 or δ+ ≤ 0.5

vs.

HA : β > 0 and δ+ > 0.5.

δ+ captures information on the average sign of the derivative, while β captures information

on the average magnitude. Together, they provide a rich summary of the distribution of f ′(X)

that is useful for practitioners. We provide results for joint inference on the vector (δ+, β) in

Section 5.1.

Example 3 (Life-cycle predictions). Some theories in economics make predictions about the

shape of features of the joint distribution of variables over the life cycle, such as the conditional

mean function or conditional variance function.3 Suppose a theory predicts that a function

3In this paper we focus on estimation of the conditional mean function, but we mention the conditional

variance function here to emphasize that the framework of partial monotonicity has many potential applications.
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f : R 7→ R+ defined by f(age) = E(y|age) or by f(age) = V (y|age) belongs to the class F1 of

monotone functions, the class F2− of concave functions, or the class F1∩F2− of monotone con-

cave functions. For example, Storesletten, Telmer & Yaron (2004) theoretically and empirically

examines the monotonicity and concavity of consumption inequality over age in the United

States; and Van Landeghem (2012) explores convexity of life satisfaction over age in the United

States. We can embed the testing of these classes of prediction into the PMP framework by

considering partial monotonicity and partial convexity of f . A notable feature of this example

is that since the prediction is about the life cycle, the strength of the prediction is most appro-

priately assessed with the unweighted shape of f ′. That is, we define δU+
(1)

:= PU [f ′ (age) > 0],

δU+
(2−)

:= PU [f ′′ (age) < 0], and δU+
(1);(2−)

:= PU [f ′ (age) > 0, f ′′ (age) < 0], where the probabil-

ity is taken with respect to the uniform distribution U ∼
[
age, age

]
, where

[
age, age

]
is the

interval of ages over which the model makes a prediction. If instead we used the δ+ ≡ δage+

counterparts, the parameters would implicitly integrate over the marginal distribution of age;

and if the population has more young people than old people, the parameters would assess the

model’s prediction with a higher weight on the predicted sign for young people. In Section 5.2,

we provide results for inference on the counterfactually-weighted uniform PMP, δU+, and more

generally for δZ+ where Z has any distribution that satisfies certain regularity conditions.

Example 4 (Heterogeneous treatment effects). We are often interested in heterogeneous treat-

ment effects in which the heterogeneity is potentially driven by more than one variable. We

can consider inference on the PMP when we are interested in heterogeneity of the sign of

the derivative. For example, whether a certain drug or vaccine benefits people could depend

on their age, weight, blood pressure, diet, and medical history. Suppose that an outcome

of interest, Y , is modeled as Y = f(X1, . . . , Xk) + ϵ, where xj is the treatment of interest

for 1 ≤ j ≤ k, and f is estimated either parametrically (in which case the heterogeneous

effects are captured by interaction terms) or non-parametrically. Displaying the full results

of estimation of fxj (x1, . . . , xk) and corresponding confidence band would be complex, even

in the case of a parametric specification. Further, in order to take into account how much

of the population is affected, we would need to present additional inference on the joint dis-

tribution of X. The PMP simplifies reporting results by considering inference on the scalar

δ+xj
:= P

[
fxj (X1, . . . , Xk) > 0

]
.4

Example 5 (Slutsky restrictions). Consider a sample of individuals purchasing G goods. Let

qi ∈ RG denote the vector of quantities purchased by consumer i facing prices pi ∈ RG with

income yi ∈ R. Let demand be modeled as Qi = x(Pi, Yi) + ϵi, where x : RG × R → RG and

ϵi ∈ RG is an independent error term with mean 0. For consumer behavior to be consistent

4For simplicity, we focus on the case in which the partial derivative exists, but the

PMP can be estimated when the treatment is binary as well with the parameter δ+xj
:=

P [f(X1, . . . , Xj−1, 1, Xj+1, . . . , Xk)− f(X1, . . . , Xj−1, 0, Xj+1, . . . , Xk) > 0].
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with utility maximization, x must satisfy the Slutsky restrictions, which are conditions on the

RG × RG matrix

S(p, y) =
∂x(p, y)

∂pT
+

∂x(p, y)

∂y
x(p, y)T .

S represents the derivative of the Hicksian demand with respect to price. The Slutsky restric-

tions require that S(p, y) be symmetric and negative semi-definite (NSD) for every (p, y) ∈
RG+1. Intuitively, S is the substitution effect of a price increase, and consumer demand theory

suggests it should be negative regardless of a good’s price or a consumer’s income.

Several papers have provided tests of the Slutsky restrictions.5 The present paper suggests

an alternative approach to the previous strict tests of the Slutsky restrictions by proposing

inference for the parameter P [S(P, Y ) is NSD]. Even if S(p, y) is symmetric for all (p, y), it may

be that the estimator Ŝ(p, y) is almost surely not symmetric for any pair in the sample, even

for arbitrarily large samples. However, the restriction of symmetry can be accommodated by

considering an upper-bound estimator for the parameter P [S(P, Y ) is NSD and symmetric]6

This PMP approach is applicable to similar frameworks as well. For example, recently

Bhattacharya (2021) presented sufficient and necessary conditions for binary choice probabil-

ities to be consistent with utility maximization. For simplicity, suppose demand is smooth

and let z(Pi, Yi) denote the fraction of a population which, if they possessed income Yi and

faced prices Pi, would purchase a good. For z to be consistent with utility maximization, the

following two inequalities must hold for all (p, y): zp(p, y) ≤ 0, zp(p, y) + zy(p, y) ≤ 0. To

embed these conditions in a PMP framework, we consider the following parameter:

δ+ := P [zp(P, Y ) ≤ 0, zp(P, Y ) + zy(P, Y ) ≤ 0] .

3. Parametric Estimation

Define the domain of X as X . Denote p := dim(X). Define g = ∂f(X)
∂Z . This definition

reduces to f ′(X) when Z = X and p = 1. In general, Z can be a subvector of X, or any

other variables that are transformations of X. For any y ∈ R and real-valued function h,

denote Mh(y) := {x|h(x) = y} as the contour set of h at level y. For any y ∈ R, we call y a

critical value of h if there exists x ∈ Mh(y) such that ∇h(x) = 0, where ∇h is the gradient

of h. Otherwise, we call y a regular value of h. Appendix A has definitions for Cr, manifolds,

connected branches, and volume of a manifold, which are used in this section.

5See Banks, Blundell & Lewbel (1997), Blundell, Browning & Crawford (2003), Dette, Hoderlein & Neumeyer

(2016), Epstein & Yatchew (1985), Gallant & Souza (1991), Härdle, Hildenbrand & Jerison (1991), Hoderlein

(2011), Lewbel (1995), Fang & Seo (2021).
6The PMP framework is applicable even for parameters defined by boundary conditions, rather than inequal-

ities. Although the naive plug-in estimator based on f̂ is unable to pick up whether an equality holds exactly,

V̂ [f̂ ] can be employed to construct interval estimators that asymptotically detect any violation of the equality.
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We consider a general setting where a preliminary estimator ĝ of g exists. To be more

specific, we assume that there exists an → ∞ such that an(ĝ(x)− g(x)) →d G(x), where G(x)

is a Gaussian process with tight paths.

Example 6 (Parametric formulation). One way to obtain such ĝ(x) is when f(x) is parametrized

as f(x, β). The plugged in estimator g(x, β̂) given β̂ as an estimator of β can, in general, ap-

proximate g(x, β) in a Gaussian process.

Specifically, assume that yi = f(xi, β)+ϵi holds. In practice, f is often chosen as polynomials

of xi, e.g., quadratic.

We consider the least squares estimation β̂ = argmaxβ∈Θ
∑n

i=1(yi − f(xi, β))
2, where Θ is

a compact set that contains the true parameter β0.

Under mild regularity conditions of f , one can conclude that β̂ converges to β0. In addition,

we usually have
√
n(β̂ − β0) →d N(0,Ω).

If g is also C1 on X , then ĝ(X) = ∂f(x,β̂)
∂Z converges to g(X) = ∂f(x,β0)

∂Z . In addition, by the

Delta-method,
√
n(ĝ(x)− g(x)) →d N(0, G(x)′ΩG(x)), where G(x) = ∂g(x,β)

∂β |β=β0 .

As shown in the previous section, the PMP is defined as δ+ := P(g(X) > 0). The estimator

is δ̂+ := P(ĝ(x) > 0). To show the asymptotic property of δ̂+, we use techniques from

Chernozhukov et al. (2018).

Suppose g(x) = (g1(x), . . . , gp(x)) is differentiable in x, and denote ∇gi(x) := ∂gi
∂x , i =

1, 2, . . . , p. For now, assume that all x are continuous. This setting can be easily generalized

to the case where discrete variables are allowed.

Assume that the domain of x, denoted as X is bounded and open. We also assume that

y = 0 is a regular value of g.

Similar to Chernozhukov et al. (2018), we require the following assumption for all g(·) = gi(·),
i = 1, 2, . . . , p.

Assumption 1. (1) The part of the domain of the PE function x 7→ ∆(x) of interest, X , is

open and its closure X is compact. The distribution µ is absolutely continuous with respect

to the Lebesgue measure with density µ′. There exists an open set B(X ) containing X such

that x 7→ ∆(x) is C1 on B(X ), and x 7→ µ′(x) is continuous on B(X ) and is zero outside the

domain of interest, i.e., µ′(x) = 0 for any x ∈ B(X ) \ X .

(2) For any regular value y of g on X , we assume that the closure of Mg(δ) has a finite

number of connected branches.
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(3) ĝ, the estimator of g, belongs to F with probability approaching 1 and obeys a functional

central limit theorem, namely,

an(ĝ − g)⇝ G∞ in ℓ∞(B(X )),

where an is a sequence such that an → ∞ as n → ∞, and x 7→ G∞(x) is a tight process that

has almost surely uniformly continuous sample paths on B(X ).

(4) Define H as the set of all bounded linear operators H on G of the form

g 7→ H(g)

that are uniformly continuous on g ∈ G under the L2(µ) norm. The function x 7→ µ̂(x) is a

distribution over B(X ) obeying in H,

bn(µ̂− µ)⇝ H∞, (3.1)

where g 7→ H∞(g) is a.s. an element of H (i.e. it has almost surely uniformly continuous

sample paths on G with respect to the L2(µ) metric) and bn is a sequence such that bn → ∞ as

n → ∞.

Let rn := an∧bn, the slowest of the rates of convergence of ∆̂ and µ̂. Assume rn/an → s∆ ∈
[0, 1] and rn/bn → sµ ∈ [0, 1], where sg = 0 when bn = o(an) and sµ = 0 when an = o(bn). For

example, sµ = 0 if µ is treated as known.

Define δ̂+j := 1
n

∑n
i=1 1(ĝj(xi) > 0) as the PMP in jth covariate xj , j = 1, 2, . . . , p.

Below we present the asymptotic property of the PMP when δ+1 , . . . , δ
+
p are in the interior.

Theorem 1. Suppose Assumption 1 holds. Assume that y = 0 is a regular value for all

g1, . . . , gp, and δ+1 , . . . , δ
+
p are real fixed numbers in (0, 1). Assume that G and H are jointly

Gaussian. Then, the PMP estimator satisfies that:

(1) rn((δ̂
+
1 , . . . , δ̂

+
p )− (δ+1 , . . . , δ

+
p ))⇝ N(0,Ω1), where Ω1 is a semi-positive definite matrix

defined in (A.4).

(2) Assume that the manifolds Mgj (0), j = 1, 2, . . . , n, intersect each other with 0 measure

in volume in dx − 1 dimensional space, where volume of manifold.

Then, rn(δ̂
+ − δ+)⇝ Z∞, where Z∞ is a Gaussian distribution defined in (A.5).

As shown in Chernozhukov et al. (2018), bootstrap gives consistent inference of δ+. Below

we state a corollary that allows us to perform inference stated in Theorem 1.

Define δ̂∗+ as the PMP computed via bootstrap data xB1 , . . . , x
B
n . More specifically, we

assume that the estimator using the bootstrap data satisfies: an(ĝ
∗ − ĝ)⇝ G(x), and bn(µ̂

∗ −
µ̂)⇝ H∞. δ̂∗+ is defined as

1

n

n∑
i=1

1(ĝ∗(xBi ) > 0).
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Define δ̂∗+j :=
∑n

i=1 1(ĝ
∗
j (x

B
i ) > 0) as the PMP in jth covariate xj . Below we present the

asymptotic property of the PMP.

Corollary 1. Suppose all assumptions in Theorem 1 hold. Then, the bootstrapped PMP sat-

isfies:

(1) rn((δ̂
∗+
1 , . . . , δ̂∗+p )− (δ̂+1 , . . . , δ̂

+
p ))⇝ N(0,Ω1).

(2) rn(δ̂
∗+ − δ̂+)⇝ Z∞.

4. Non-Parametric methods: PMP via local polynomial regression

When parametric form of the target function is unavailable, researchers can consider to use

non-parametric methods instead. To address our problem, we propose to use locally linear to

estimate partial derivatives of the function f(X) as:

α̂(x), β̂(x) := argminα,β

n∑
i=1

Kh(xi − x)(yi − θKPK(
x− xi

h
))2, (4.1)

where

Kh(u) :=
1

h
K(

u

h
), (4.2)

K(·) is a kernel function, e.g., Epanechnikov kernel, and PK(·) is a multi-variable polynomial

up to the Kth order. We assume that K is fixed such that K ≥ p.

There are a few reasons for us to consider local-linear estimator, rather than the other non-

parametric kernel based methods. First, as we are interested in make inference on the PMP,

which is a function that depends on the partial derivatives of the function f(·), local polynomial

provides a feasible and convenient method to estimate ∂f
∂X . Second, local polynomial is robust

to boundaries, which is good for our analysis. Third, since we are not investigating derivatives

with order larger than one, local polynomial estimator is enough for our purpose. Based on the

same spirit, similar methods such as locally quadratic, can be used if convexity measurement

similar to PMP is to be considered.

We consider a non-parametric mean model

yi = f(xi) + ϵi, (4.3)

i = 1, 2, . . . , n. Assume that (xi, ϵi) are i.i.d. across i, and E[ϵi|X] = 0, V ar(ϵi|X) = σ2.

We adopt a set of common assumptions in Kernel function K(·) as follows:

Assumption 2 (Kernel). Assume that the kernel function satisfies the following conditions:

(1) The support of K(·) is contained in {u : ∥u∥ ≤ 1}.
∫
∥u∥≤1K(u)du = 1.

(2) K(u) = K(−u).
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(3) K(·) is a bounded and continuous kernel function on Rp. The class of functions K :=

{k(ht+ x) : h > 0, x ∈ Rd} is VC type with envelop ||k||∞.

Remark 1. Statements (1) and (2) are common for kernel functions. Statement (3) is required

to utilize results in Chernozhukov, Chetverikov & Kato (2014). Such condition holds for well-

known kernels such as the Epanechnikov kernel.

For each x ∈ X , we can define

Wh(x) :=

(
K(

x1 − x

h
), . . . ,K(

xn − x

h
)

)⊺
(4.4)

as the weight function of x. For any random variables z1, . . . , zn, we define

En,h[zi] =
1

nhp

n∑
i=1

ziWh,i(x) (4.5)

as the weighted average of z1, . . . , zn given weights vector Wh(x), where Wh,i(x) is the ith

component of Wh(x).

Denote

Qn,h := En,h[P
K(

x− xi
h

)(PK(
x− xi

h
))⊺]. (4.6)

Therefore, (4.1) implies that

(α̂(x), β̂(x), β̂H(x))⊺ = Q−1
n,hEn,h[P

K(
x− xi

h
)yi],

where β̂H(x) contains all the coefficients in PK(·) with order > 1.

We consider the non-parametric PMP defined as:

δ̂+j :=

∫
x∈X

1(β̂j(x) > 0)dµ̃(x), (4.7)

where µ̃(x) is a probability measure of x on X , j = 1, 2, . . . , p.

Below we state a set of assumptions for f(x) := E[y|x], density function µ(x), and residual

ϵ.

Assumption 3. Assume that the function f(x) satisfies the following conditions:

(1) For any x ∈ X , f(x) is twice continuously differentiable.

(2) For any j = 1, 2, . . . , p, the jth derivative of f(x), denoted as ∇fj(x), 0 is a regular

value of ∇fj(x).

(3) For any s ∈ {1, 2, . . . ,K+1}, we have: supx∈X || ∂sf(x)
∂s1x1∂s2x2...∂

spxp
|| ≤ M for some generic

positive constant M > 0, where s1, . . . , sp can be any arbitrary sequence of non-negative integers

such that s1 + · · ·+ sp = s.



13

(4) Density µ(x) of x is continuous and bounded from below by a constant cµ > 0 for any

x ∈ X .

(5) E[ϵqi |X] < ∞ for some q ≥ 4.

(6) µ(x) is twice differentiable over all x ∈ X .

Remark 2. Assumptions 2 and 3 allow us to establish strong approximation results of Qn,h −
E[Qn,h] and En,h[P

K(x−xi
h )yi] − E[En,h[P

K(x−xi
h )yi]]. Such approximation is crucial in order

to approximate
√
nhp(β̂(x) − β(x)) as a tight local-empirical process. Consequently, the inte-

gration by partition technique in Chernozhukov et al. (2018) can be used and therefore, CLT

is established in the following Theorem 2.

Theorem 2 (Inference of Non-parametric PMP). Assume that Assumptions 1–3 hold. Assume

that δ+1 , . . . , δ
+
p are fixed real numbers in (0, 1). Suppose K ≥ p. Assume that h satisfies the

growth conditions that n
1− 2

q hp → ∞, nh2K+2 → 0, nh2p → ∞. If µ̃(x) = µ(x), then the PMP

defined in (4.7) satisfies:
√
n((δ̂+1 , . . . , δ̂

+
k )− (δ+1 , . . . , δ

+
k ))⇝ N(0, diag(σ2

1, . . . , σ
2
p)) (4.8)

where σ2
j is defined in (A.46), j = 1, 2, . . . , p.

Remark 3. Theorem 2 establishes the asymptotic distribution of
√
n((δ̂+1 , . . . , δ̂

+
k )−(δ+1 , . . . , δ

+
k )),

which allows us to perform inference on (δ+1 , . . . , δ
+
k ). Though the derivatives are estimated

locally, the PMP aggregates the information from the local derivatives and thus attains the
√
n

convergence rate.

5. Extensions

The main results presented in the previous section can be extended to other PMP measures

for different interests. Subsection 5.1 considers joint inference on PMP and the average treat-

ment effect. Subsection 5.2 investigates PMP under a different measure than the measure of

X.

5.1. Joint distribution with average effect. Let β̂ := En[ĝ(xi)]. We motivated the interest

in the joint distribution of β̂ and δ̂+ in Example 2. We now provide the result.

Corollary 2. Assume that all assumptions in Theorem 1 hold. Then, rn(β̂−β) and rn(δ̂
+−δ+)

is jointly normal with covariance matrix defined in (A.50).

5.2. Counterfactually-weighted PMP. Define δ̂Z+ :=
∫
x∈X ,z∈Z 1(ĝ(x) > 0)µ̃(z, x)dxdz,

where Z is the support of z, µ̃(z, x) is the joint distribution of Z,X, and ĝ is an estimator of

g. One special case that we consider is that x = z and µ̃(z, x) reduces to µ̃(z) where µ̃ may

not be the same as µ. In such a case, we have the following corollary.
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Corollary 3. Assume that all assumptions in Theorem 1 hold. In addition, we assume that

Assumption 1 holds for the joint support of X and Z, i.e., X ∪ Z, and z̃ is known. Then,

an(δ̂
Z+ − δZ+) → N(0,ΩZ), where ΩZ is defined in (A.53).

Remark 4. Corollary 3 covers only the case where Z ⊂ X . When Z is not a subset of X ,

generalizibility of estimator ĝ can be problematic, and hence leads to bad estimation of δZ+.

6. Simulations

Parametric example. Recall Example 1. We explore estimation of a “partial complements

parameter” (PCP) by considering the following parametric specification:

f(k, l) = β0 + β1l + β2l
2 + β3k + β4k

2 + β5lk + β6kl
2 + β7lk

2 + β8l
2k2

A similar specification was used in Chen, Chernozhukov, Fernández-Val, Kostyshak & Luo

(2021) and allows for production functions that satisfy a variety of properties.7 The Hessian

matrix evaluated at l and k is

H(l, k) =

[
2β2 + 2β6k + 2β8k

2 β5 + 2β6l + 2β7k + 4β8lk

β5 + 2β6l + 2β7k + 4β8lk 2β4 + 2β7l + 2β8l
2

]
.

The PCP thus equals the following:

δ+lk = P [flk (L,K) > 0]

= P [β5 + 2β6L+ 2β7K + 4β8LK > 0] .

We simulate data by drawing K and L independently from the uniform [0, 1] distribution,

draw ϵ from N(0, 1), and construct y as y = f(k, l) + ϵ. For the simulations we set βj = 0 for

j = 0, 1, . . . , 7, and vary β8 to vary the PCP. We show results for β8 ∈ {−1.25,−1.5,−3.5}.
We set the number of bootstrap replications to n (the sample size).

Table 1 shows results for 5 different types of bootstraps: the basic bootstrap, the percentile

method, the normal approximation, the adjusted bootstrap percentile (BCa) method, and as

a conservative approach the union of the percentile interval and the BCa interval. Where rele-

vant, we intersect the interval with the parameter space, [0, 1], which does not affect coverage

but reduces length.

For all three values of β8, the simulations show that for large n the confidence intervals have

good coverage and the length of the confidence intervals decreases. Because of finite-sample

bias, the confidence interval has poor properties in some cases for small n.

7In Chen et al. (2021) a tensor product of third-degree global polynomials was used. Here, we use a tensor

product of second-degree polynomials to keep the algebra (e.g., analytical derivation of PMP), concise.
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Table 1. Monte Carlo Results for PCP

n

PCP (β8) 100 200 500 1,000 2,500

1 (-1.25) length 0.485 0.446 0.402 0.356 0.279

covers 0.043 0.059 0.205 0.459 0.828

mse 0.146 0.106 0.060 0.034 0.014

0.96 (-1.5) length 0.487 0.449 0.412 0.374 0.305

covers 0.096 0.148 0.339 0.603 0.866

mse 0.134 0.100 0.058 0.034 0.014

0.55 (-3.5) length 0.483 0.438 0.391 0.354 0.298

covers 0.966 0.940 0.903 0.878 0.874

mse 0.026 0.026 0.025 0.021 0.013

7. Conclusion

PMP generalizes monotonicity, providing researchers with a flexible way to test the empirical

accuracy of several classes of predictions and to assess effect profiles, with both reduced-form

and structural estimation methods. Our results accommodate estimators based on simple

methods—such as OLS with polynomial and interaction terms—to non-parametric estimators

such as local-linear regression. Semi-parametric methods are an attractive alternative because

the dimension of the parameter space of the PMP is the same as in parametric estimation

and does not increase as the dimension of the support increases. Extending the PMP to

a multivariate context is simple which allows for practical applications where heterogeneous

effects are driven by potentially several variables. Results for inference are provided and easy

to apply. The PMP framework can be generalized even further in future research, to allow for

multiple treatments and multiple outcome variables.

By adding PMP estimation to their toolbox, researchers can complement statistics that are

sensitive to magnitude. The simple interpretation of PMP makes it easy to assess power (e.g.,

for a test of standard monotonicity), to report results concisely, and to convey results to a

general audience.

Appendix A. Proofs

We first introduce some additional notation. For any positive integer r, Cr is the class of

all differentiable functions whose derivative is in Cr−1, where C0 is the class of all continuous

functions.

We will require the following definitions.

Definition 1 (Manifold). Let dk, dx and r be positive integers such that dx ≥ dk. Suppose

that M is a subspace of Rdx that satisfies the following property: for each point m ∈ M, there

is a set V containing m that is open in M, a set K that is open in Rdk , and a continuous map
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αm : K → V carrying K onto V in a one-to-one fashion, such that: (1) αm is of class Cr on K,

(2) α−1
m : V → K is continuous, and (3) the Jacobian matrix of αm, Dαm(k), has rank dk for

each k ∈ K. Then M is called a dk-manifold without boundary in Rdx of class Cr. The map

αm is called a coordinate patch on M about m. A set of coordinate patches that covers M is

called an atlas.

Definition 2 (Connected Branch). For any subset M of a topological space, if any two points

m1 and m2 cannot be connected via path in M, then we say that m1 and m2 are not connected.

Otherwise, we say that m1 and m2 are connected. We say that V ⊆ M is a connected branch

of M if all points of V are connected to each other and do not connect to any points in M\V.

Definition 3 (Volume). For a dx × dk matrix A = (x1, x2, . . . , xdk) with xi ∈ Rdx, 1 ≤ i ≤
dk ≤ dx, let Vol(A) =

√
det(A′A), which is the volume of the parallelepiped P (A) with edges

given by the columns of A, P (A) = {c1x1 + · · ·+ cdkxdk : 0 ≤ ci ≤ 1, i = 1, . . . , dk}.

The volume measures the amount of mass in Rdk of a dk-dimensional parallelepiped in Rdx ,

dk ≤ dx. This concept is essential for integration on manifolds, which we will discuss shortly.

First we recall the concept of integration on parameterized manifolds:

Definition 4 (Integration on a parametrized manifold). Let K be open in Rdk , and let α :

K → Rdx be of class Cr on K, r ≥ 1. The set M = α(K) together with the map α constitute a

parametrized dk-manifold in Rdx of class Cr. Let g be a real-valued continuous function defined

at each point of M. The integral of g over M with respect to volume is defined by∫
M

g(m)dVol :=

∫
K
(g ◦ α)(k)Vol(Dα(k))dk, (A.1)

provided that the right side integral exists. Here Dα(k) is the Jacobian matrix of the mapping

k 7→ α(k), and Vol(Dα(k)) is the volume of matrix Dα(k) as defined in Definition 3.

The above definition coincides with the usual interpretation of integration. The integral can

be extended to manifolds that do not admit a global parametrization α using the notion of

partition of unity. This partition is a set of smooth local functions defined in a neighborhood

of the manifold. The following Lemma shows the existence of the partition of unity and is

proven in Lemma 25.2 in Munkres (1991).

A.1. Proof of Theorem 1.

Proof of Theorem 1. (1) Given the conditions stated in Theorem 1, Theorem 4.1 of Cher-

nozhukov et al. (2018) shows that for each j = 1, 2, . . . , p,

δ̂+j :=

n∑
i=1

1(ĝj(xi) > 0)⇝ sgTj,∞(0) + sµH∞(gj,0), (A.2)
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where Tj,∞(0) :=
∫
Mgj (0)

Gj,∞(x)µ′(x)
∥∂gj(x)∥ dVol, Gj,∞ is the jth component of G∞, and gj,0 :=

1(gj(x) > 0).

Since we can apply (A.2) to j = 1, 2, . . . , p, therefore, the convergence law stated in (A.2)

holds for the entire vector of g. More specifically,

rn((δ̂
+
1 , . . . , δ̂

+
p )− (δ+1 , . . . , δ

+
p ))⇝ (Z1, . . . , Zp), where

Zj := sgTj,∞(0) + sµH∞(gj,0). (A.3)

Since G and H are jointly Gaussian, define

Ω1 := Var(Z1, . . . , Zp), (A.4)

therefore, rn((δ̂
+
1 , . . . , δ̂

+
p )− (δ+1 , . . . , δ

+
p ))⇝ N(0,Ω1).

(2) We can define gmin(x) := min1≤j≤k gj(x). Therefore, 1(g(x) > 0) = 1(gmin(x) > 0). The

benefit of doing so is that the value of gmin(x) is one-dimensional.

By assumption, Mgj (0), j = 1, 2, . . . , p, do not intersect each other with positive dx − 1

dimensional volume. Hence, gmin(x) is differentiable almost everywhere around Mgmin(0),

and Mgmin(0) can be divided into a finite collection of p− 1 dimensional manifold.

Denote M := ∪p
j=1M∗

gj (0), where M∗
gj (0) is a submanifold of Mgj (0), and M∗

gj (0) are

disjoint of each other.

Therefore, rn(δ̂
+ − δ+)⇝

∑p
j=1 sg

∫
M∗

gj
(0)

Gj,∞(x)µ′(x)
∥∂gj(x)∥ dVol + sµH∞(gmin,0), where gmin,0 :=

1(gmin(x) > 0). Since G∞ and H∞ are jointly Gaussian, therefore, rn(δ̂
+ − δ+) converges to

a Gaussian distribution

Z∞ :=

p∑
j=1

sg

∫
M∗

gj
(0)

Gj,∞(x)µ′(x)

∥∂gj(x)∥
dVol + sµH∞(gmin,0). (A.5)

□

Proof of Corollary 1. Similar to the proof of Theorem 1, the proof of this corollary follows

Theorem 4.3 of Chernozhukov et al. (2018). Therefore, we abbreviate the results. □

A.2. Proof of Theorem 2. Define

Qh(x) :=
1

hp
E
[
K

(
xi − x

h

)
PK(

x− xi
h

)(PK(
x− xi

h
))⊺
]
.

It is easy to know that

Qh(x) → Q(x) := µ(x)QK , (A.6)

where QK :=
∫
||xi−x||≤1K(xi−x)PK(x−xi

h )(PK(x−xi
h ))⊺ is a fixed positive definite matrix given

µ(x) > 0.
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More specifically, by assumption, we have:

∥Qh(x)−Q(x)∥ ≤ CQh
2 (A.7)

for some generic constant CQ > 0 given that µ(x) is twice-continuously differentiable.

Before we prove Theorem 2, we need the following lemma.

Lemma 1 (Strong approximation ofQn,h(x)). Assume that Assumptions 2 and 3 hold. Assume

that h = Cn−γ for some fixed C, γ > 0, and 1− γp > 0. Assume that X is compact. We have:
√
nhp sup

x∈X
||Qn,h −Qh|| = OP

(
(nhp)−

1
6 lnn

)
. (A.8)

Proof. Since xi ∈ X is bounded, i = 1, 2, . . . , n, by Chernozhukov et al. (2014), Wn :=√
nhp(Qn,h − Qh) is can be approximated by a tight local empirical process. The conclusion

of the lemma follows directly from Proposition 3.1 of Chernozhukov et al. (2014). □

Proof of Theorem 2. For any j ∈ {1, 2, . . . , p}, by definition, we know that

δ+j =

∫
x∈X

1(∇fj(x) > 0)dµ(x).

By Assumption 3, for any x′ that is close enough to x and any f(x) = fj(x), we have:

||f(x′)− f(x)−∇f(x)(x′ − x)− PK
1 (x′ − x)|| ≤ C||x′ − x||K+1, (A.9)

where PK
1 (x′ − x) is a polynomial of (x′ − x) with degree ranging from 2 to Kth order with all

coefficients ≤ M .

Denote r1(x
′, x) := f(x′) − f(x) −∇f(x)(x′ − x) − PK

1 (x′ − x). So we have that |r1(x)| ≤
C∥x′ − x∥K+1.

(4.1) implies that:

(α̂(x), β̂(x), β̂H(x))⊺ = Q−1
n,hEn,h[P

K(
x− xi

h
)(f(x) +∇f(x)

(xi − x)

h
+ PK

1 (xi − x) + r1(xi, x) + ϵi)]

(A.10)

= (f(x),∇f(x), fH(x))⊺ +Q−1
n,hEn,h[P

K(
xi − x

h
)(r1(xi, x) + ϵi)], (A.11)

where fH(x) is some function of x bounded by M .

Define Sn(x) :=
√
nhpEn,h[P

K(xi−x
h )ϵi]. It is easy to see that E[Sn(x)] = 0 for all x ∈ X

since E[ϵi|xi] = 0. Define Wn(x) = supx∈X |Sn(x)|.

Under our assumptions, by Proposition 3.2 of Chernozhukov et. al (2017), Sn(x) can be

well approximated by a local Gaussian process. More specifically, there exists a tight Gaussian

process Bn(x), x ∈ X such that W̃n(x) := supx∈X Bn(x) and

|W̃n(x)−Wn(x)| = OP

(
(nhp)−

1
6 log n+ (nhp)−

1
4 log

5
4 n+ (n1−2/qhp)−

1
2 log

3
2 n
)
. (A.12)
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Choose h such that n1−2/qhp log−3 n → ∞ and nhp log−6 n → ∞, then

|W̃n(x)−Wn(x)| = OP

(
max{(nhp)−

1
6 log n, (n1−2/qhp)−

1
2 log

3
2 n}

)
= op(1). (A.13)

That said, Wn(x) = Op(1), since Bn(x) is a tight Gaussian process.

Denote Ln(x) := Q−1
n,hEn,h[(1,

xi−x
h )⊺r1(xi, x)].

Since the kernel K(·) is rth order, it is easy to know that

∥E[En,h[P
K(

xi − x

h
)r1(xi − x)]]∥ (A.14)

≤ M
√

p+ 1hK+1. (A.15)

for some constant C > 0.

Define WL
n (x) := supx∈X ∥

√
nhp(En,h[P

K(xi−x
h )r1(xi − x)]−E[En,h[P

K(xi−x
h )r1(xi − x)]])∥.

Similar to Wn, we have that WL
n (x) = Op(1).

Therefore, supx∈X |β̂(x)−β(x)| ≤ Op(
√
p+ 1hK+1)+∥Qn,h∥−1 1√

nhp
supx∈X |Wn(x)| = OP (h

K+1+
1√
nhp

).

Denote tn := 1√
nhp

, define:

Gn(x) := Sn(x) + t−1
n Ln(x).

We have that supx∈X ∥Gn(x)∥ ≤ supx∈X ∥Sn(x)∥+ supx∈X ∥
√
nhpLn(x)∥ = Op(1).

Denote ∆j(x) := ∇fj(x), j = 1, 2, . . . , p.

Given that Gn(x) = Op(1), Lemma E.4 of Chernozhukov et al. (2018) shows that, for

continuous function µ̃(x), tn → 0 and Gn(x) as a bounded element,∫
X [1(∆j(x) + tnGn(x) > 0)− 1(∆j(x) > 0)]µ̃(x)dx

tn
= −

∫
M∆j

µ̃(x)Gn(x)dVol

||∇∆j(x)||
+ o(1). (A.16)

Moreover, when gj(x) is twice differentiable, i.e., ∆j(x) is differentiable, then we have:∫
X [1(∆j(x) + tnGn(x) > 0)− 1(∆j(x) > 0)]µ̃(x)dx

tn
= −

∫
M∆j

µ̃(x)Gn(x)dVol

||∇∆j(x)||
+O(tn).

(A.17)

Denote Gn = (Gn,0, Gn,1, . . . , Gn,p)
⊺ where Gn,j is the component of Gn that corresponds

to β̂j , j = 1, 2, . . . , p. Similarly, we call Sn,j , Ln,j as the component in Sn, Ln that correspond

to β̂j , respectively.
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Given that µ̃ = µ, by (A.17), with probability going to one, we have:

δ̂+j − δ+j (A.18)

= tn

∫
x∈X [1(∆j(x) + tnGn,j(x) > 0)− 1(∆j(x) > 0)]µ(x)dx

tn
(A.19)

= −tn

∫
M∆j

µ(x)Gn,j(x)dVol

||∇∆j(x)||
+O(t2n) (A.20)

= −tn

∫
M∆j

µ(x)Sn,j(x)dVol

||∇∆j(x)||
+ Ln,0,j +O(t2n), (A.21)

where

Ln,0 = −tn

∫
M∆j

µ(x)
√
nhpLn(x)dVol

||∇∆j(x)||
(A.22)

= −
∫
M∆j

µ(x)Q−1
n,hEn,h[P

K(xi−x
h )r1(xi, x)]dVol

||∇∆j(x)||
(A.23)

= −En,h

∫
M∆j

µ(x)PK(xi−x
h )r1(xi, x)dVol

||∇∆j(x)||
(A.24)

We analyze Sn,0 first in (A.21).

Notice that in (A.21), denote the leading term for j = 1, 2, . . . , p in (A.21) as

Sn,0,j := −tn

∫
M∆j

µ(x)Sn,j(x)dVol

||∇∆j(x)||
.

Denote Q−1
j (x), Q−1

n,h,j(x) as the j + 1th row of Q−1(x), Q−1
n,h(x) respectively, j = 1, 2, . . . , p.

We can rewrite Sn,0,j as:

Sn,0,j = −tn

∫
M∆j

µ(x)Sn,j(x)dVol

||∇∆j(x)||
(A.25)

= −
∫
M∆j

µ(x)Q−1
n,h,j(x)En,h[P

K(xi−x
h )ϵi]dVol

||∇∆j(x)||
(A.26)

=
1

n

n∑
i=1

(Wn,0,j(i)ϵi +Wn,1,j(i)ϵi), (A.27)

where

Wn,0,j(i) := −
∫
M∆j

h−pµ(x)Qj(x)
−1K((xi − x)/h)PK(xi−x

h )]dVol

||∇∆j(x)||
(A.28)

is an i.i.d. random variable that depends on xi only and it is uncorrelated with ϵi, and

Wn,1,j(i) := −
∫
M∆j

h−pµ(x)(Qn,h,j(x)
−1 −Q−1

j (x))PK(xi−x
h )dVol

||∇∆j(x)||
(A.29)
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is a residual term that is also uncorrelated with ϵi.

It is easy to know that by law of iterated expectations, we have:

E[Wn,l,j(i)ϵi] = E[E[Wn,l,j(i)E[ϵi|X]] = 0,

for l = 0, 1.

By Lemma 1,

sup
x∈X

||Q−1
n,h(x)−Q−1

h (x)|| ≾p (nh
p)−

2
3 log n.

Therefore,

sup
x∈X

∥Q−1
n,h,j(x)−Q−1

j (x)∥ ≤ sup
x∈X

∥Q−1
n,h,j(x)−Q−1

h,j(x)∥+ ∥Q−1
h,j(x)−Q−1

j (x)∥ (A.30)

≾p (nh
p)−

2
3 log n+ h2. (A.31)

That said, when h = Cn−γ such that 1 − pγ > 0 and γ > 0, supx∈X ∥Q−1
n,h,j − Q−1

j (x)∥ =

op(1). Therefore,
1
n

∑n
i=1Wn,1,j(i)ϵi must be dominated by 1

n

∑n
i=1Wn,0,j(i)ϵi, since the second

moment of 1
n

∑n
i=1Wn,1,j(i)ϵi is of higher order of the second moment of 1

n

∑n
i=1Wn,0,j(i)ϵi.

Now, let’s focus on Wn,0,j(i).

Recall that

Wn,0,j(i) = −
∫
M∆j

h−pK((xi − x)/h)Q−1
K,1,jP

K(xi−x
h )dVol

||∇∆j(x)||
, (A.32)

where Q−1
K,1,j is the j + 1th row of Q−1

K that correspond to βj .

Define M∆j (h) as

M∆j (h) := {x ∈ X |dH(x,M∆j ) ≤ h}.

Notice that Wn,0,j = 0 if xi /∈ M∆j (h).

Denote Bh(x) as the ball centered at x with radius h.

Therefore,

E[Wn,0,j(i)
2] = h−2pE[

(∫
Bh(xi)∩M∆j

K(xi−x
h )Q−1

K,1,jP
K(xi−x

h )dVol

||∇∆j(x)||

)2

] (A.33)

= h−2p

∫
x∈M∆j

(h)
µ(xi)

(∫
Bh(xi)∩M∆j

K(xi−x
h )Q−1

K,1,jP
K(xi−x

h )dVol

||∇∆j(x)||

)2

dxi. (A.34)

Denote Kp−1(z) :=
∫
x′=x+w,w⊺(x′−x)=0,∥w∥=z K(x′ − x)dx′ as the integration of kernel K(·)

on a p−1 dimensional hyperplane with distance to 0 equals to z ≥ 0, for fixed w with ∥w∥ = z.

It is easy to know that
∫ 1
z=0Kp−1(z)dz = 1

2 by definition of kernel K(·).
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For any xi ∈ M∆j (h), we can define the projection of xi on M∆j as x0i . Locally, µ(xi) =

µ(x0i ) + O(h) by differentiability of µ(·). Define the tangent space of M∆j at x0i as T (x0i ).

Then, ∫
Bh(xi)∩M∆j

K(xi−x
h )Q−1

K,1,jP
K(xi−x

h )dVol

||∇∆j(x)||
(A.35)

=

∫
Bh(xi)∩M∆j

K(xi−x
h )Q−1

K,1,jP
K(

xi−x0
i

h )dVol

||∇∆j(x)||
(A.36)

+

∫
Bh(xi)∩M∆j

K(xi−x
h )Q−1

K,1,jP
K(

xi−x0
i

h )dVol

||∇∆j(x)||
(A.37)

In (A.36), we know that ∫
Bh(xi)∩M∆j

K(xi−x
h )Q−1

K,1,jP
K(

xi−x0
i

h )dVol

||∇∆j(x)||

= hp(Q−1
K,1,j)

⊺∇∆j(x
0
i )

(
Kp−1(∥xi − x0i ∥/h)

(xi − x0i )/h

∥∇∆j(x0i )∥2
+O(h)

)
. (A.38)

And in (A.37), since the kernel is symmetric, we have:∫
Bh(xi)∩M∆j

K(xi−x
h )Q−1

K,1,jP
K(

xi−x0
i

h )dVol

||∇∆j(x)||
= O(hp). (A.39)

Plugging in (A.38) and (A.39) back to (A.34), we have:

h−2p

∫
x∈M∆j

(h)
µ(xi)

∫
Bh(xi)∩M∆j

K(xi−x
h )Q−1

K,1,jP
K(

xi−x0
i

h )dVol

||∇∆j(x)||

2

dxi (A.40)

= h−2p2

∫
z:=∥xi−x0

i ∥/h∈[0,1],x0
i∈M∆j

(1 + o(1))µ(x0i )h
2p(1 + o(1))

Kp−1(z)
2z2((Q−1

K,1,j)
⊺∇∆j(x

0
i ))

2

||∇∆j(x0i )||4
dVol

(A.41)

→ K2,p−1

∫
x0
i∈M∆j

µ(x0i )((Q
−1
K,1,j)

⊺∇∆j(x
0
i ))

2dVol

||∇∆j(x0i )||4
, (A.42)

where K2,p−1 := 2
∫
z∈[0,1]Kp−1(z)

2z2 is a generic constant that only depends on K(·).

Hence, by the Central Limit Theorem,

√
n(

1

n

n∑
i=1

Wn,0,j(i)ϵi) →d N(0,K2,p−1

∫
x0
i∈M∆j

µ(x0i )((Q
−1
K,1,j)

⊺∇∆j(x
0
i ))

2dVol

||∇∆j(x0i )||4
σ2), (A.43)
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where V ar(ϵi) = σ2. That said, by (A.21), we have:

δ̂+j − δ+j = Op(
1√
n
+ hK+1 +

1

nhp
). (A.44)

For the asymptotic distribution of δ+j − δj , if: (1)
√
nhK+1 → 0 (2) 1√

nhp → 0, then,

√
n(δ̂+j − δ+j ) →d N(0, σ2

j ), (A.45)

where

σ2
j := K2,p−1

∫
x0
i∈M∆j

µ(x0i )((Q
−1
K,1,j)

⊺∇∆j(x
0
i ))

2dVol

||∇∆j(x0i )||4
σ2. (A.46)

Assuming that M∆j , j = 1, 2, . . . , p, do not intersect each other with positive volume. Then,

as h → 0, the correlation between Wn,0,j and Wn,0,j′ for j ̸= j′ must go to 0 as

P(xi ∈ M∆j (h) ∩M∆j′ (h)) = o(h).

Therefore,
√
n(δ̂+j − δ+j ) is uncorrelated with each other as h → 0, for any pairs j = j1, j2.

That said,
√
n(δ̂+ − δ+) →d N(0, diag(σ2

1, . . . , σ
2
p)). (A.47)

□

A.3. Proofs of Section 5.

Proof of Corollary 2. We know that

β̂ − β =

∫
x
ĝ(x)µ̂(x)dx−

∫
x
g(x)µ(x)dx (A.48)

=

∫
x
(ĝ(x)− g(x))µ(x)dx+

∫
x
g(x)(µ̂(x)− µ(x))dx+

∫
x
(ĝ(x)− g(x))(µ̂(x)− µ(x))dx.

(A.49)

By Assumption 1, the third term in (A.49) is negligible compared to the first two terms, and

we have: rn(β̂ − β) →d sg
∫
xG∞(x)µ(x)dx+ sµH∞(g(·)). □

Therefore, define

ΩJoint := V ar(Z1, . . . , Zp, sg

∫
x
G∞(x)µ(x)dx+ sµH∞(g(·))), (A.50)

where Zj is defined in (A.3), we have:

rn(δ̂
+ − δ+, β̂ − β) →d N(0,ΩJoint). (A.51)
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Proof of Corollary 3. We can apply similar techniques of Theorem 1 to this corollary, by re-

placing µ with µ̃. Notice that in this case, µ̂ = µ = µ̃. Therefore,

an(δ̂
Z+ − δZ+) →d (W1, . . . ,Wp), (A.52)

where Wj :=
∫
x∈Mgj

Gj,∞(x)µ̃(x)dVol
∥∇gj(x)∥ , j = 1, 2, . . . , p. Define

ΩZ := Var(W1, . . . ,Wp), (A.53)

then, an(δ̂
Z+ − δZ+) →d N(0,ΩZ). □
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