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1 Introduction

Auctions for durable assets like houses and artworks are commonly recurring: a subsequent auc-

tion will often be held if the initial one fails to sell the item. Despite the prevalence of recurring

auctions, there has been limited scholarly effort to understand why they exist, let alone their equi-

librium properties. One possible explanation for their existence is that sellers are subject to limited

commitment: they cannot commit to withholding the item for sale forever after a failed auction.

However, this cannot be the whole story: if a single-round auction is indeed optimal, there are

many ways to address the limited commitment problem. For example, sellers can build a reputa-

tion of no follow-up auctions by donating unsold items to charity when auctions fail. Moreover,

in many high-stake auctions of valuable assets or resources, the government acts as the seller, and

limited commitment may be less of an issue.

In this paper, we provide both a theoretical model and an empirical analysis of recurring auc-

tions. By showing that recurring auctions can outperform single-round mechanisms in both effi-

ciency and revenue, and by evaluating the related gains in an empirical setting, we offer a new

explanation for the ubiquity of such mechanisms. Our analyses also shed light on how to fine-tune

recurring auctions to further promote efficiency and revenue.

Recurring and single-round auctions may differ significantly because entry costs are often im-

portant in the real world. For example, it may take time and effort to qualify as a bidder and

prepare a bid. In particular, a deposit is often required in auctions for valuable assets, which im-

poses a liquidity cost on the bidder. However, participation costs are usually assumed away in the

auction design literature. This leads to a biased prediction in terms of efficiency maximization,

as the social cost of entry is neglected. Failing to account for entry costs may also mislead the

revenue-maximizing design.

In an equilibrium model, we show that recurring auctions outperform single-round auctions in

efficiency and revenue when entry is costly for potential buyers. Our model setup is as follows. We

consider an independent private value environment with costly entry. Specifically, a seller has one

item for sale, and the potential buyers’ values are independently drawn from the same distribution.

The seller holds auctions in a recurring way: if an auction fails, either because no bidder shows up

or because the reserve price is not met, she will hold a follow-up auction in the next period, until

1



some time limit is reached. Potential buyers decide whether to incur an entry cost to participate in

an auction and become a bidder, as time progresses. To align with our empirical context, where the

majority of the entry cost comes from the financial constraints and the eligibility screening process,

we assume that potential buyers know their private values before they make entry decisions.1 We

characterize the equilibrium of the recurring auction game with an arbitrary time limit and reserve

price sequence.

The intuition for recurring auctions’ dominance is straightforward: in a recurring auction, po-

tential buyers sort their timing of entry according to their private values for the item. Strong

potential buyers (who have high values) tend to enter early, while weak potential buyers (who have

low values) tend to wait until they have a good chance of winning. This is because strong potential

buyers lose more from waiting, and weak potential buyers’ entry costs are more likely wasted if

they enter early.

The sorted entry pattern increases the expected total surplus in two ways.2 First, it reduces

the probability that two or more bidders simultaneously incur the entry cost, and thereby reduces

waste. In particular, weak potential buyers wait until they are sure that others are not too strong

either, and then enter into the auction. This way, their entry costs are less often incurred and

wasted in early rounds. Second, it increases the probability that the item is ultimately sold. When

an auction fails, the potential buyers update their beliefs about the others. In late rounds, they

infer that the market is less competitive, as no potential rivals had high enough values to enter

in previous rounds. This encourages them to enter into the auction, which reduces the likelihood

that the item goes unsold. Because of these two benefits, recurring auctions with appropriately

chosen reserve prices always generate higher expected total surplus than single-round auctions

(Theorem 1). Similarly, we obtain a revenue dominance result (Theorem 2).

We then derive the optimal sequence of reserve prices in a recurring auction. If the seller aims

to maximize efficiency, she trades off between making a marginal potential buyer enter at time t

or at time t + 1. Consider the thought experiment where the marginal potential buyer enters at

time t + 1 instead of time t. Then there is a social gain as the marginal potential buyer’s entry

1The informed entry assumption dates back to Samuelson (1985). Another strand of literature (see, for example,
McAfee and McMillan, 1987; and Levin and Smith, 1994) assumes that entry decisions are made when the potential
buyers do not know their private values.

2Section 3.1 illustrates these two benefits in detail with a simple example.
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cost is less often incurred, because his entry is conditional on no entry by other potential buyers at

time t. However, there are also two kinds of social loss. First, there is a loss from discounting as

the item may be allocated one period later. Second, entry at time t + 1 by other potential buyers

could have been avoided had the marginal potential buyer entered at time t. In the optimum, the

choice of reserve prices equalizes the social gain and loss from making a marginal potential buyer

enter at time t + 1 instead of time t (Theorem 3). If the seller aims to maximize profit, she faces

a similar tradeoff, and the optimal reserve prices can be characterized accordingly (Theorem 4).

In particular, the profit-maximizing condition can be obtained by replacing the marginal potential

buyer’s value with his virtual value in the efficiency-maximizing condition. This is intuitive, as we

know from the mechanism design literature that the virtual value accrues to the seller while the

value contributes to social surplus.

Given the theoretical results, it is natural to ask the following quantitative questions in an

empirical setting: (i) What are the magnitudes of the efficiency gain and the revenue gain from

using a recurring auction relative to a single-round auction? (ii) How much can efficiency and

revenue be improved for recurring auctions in practice?

We apply our theory to home foreclosure auctions in China, which represent a significant mar-

ket. In 2019, over 118,000 foreclosed houses were transacted with a transaction volume of 28

billion USD. The market size continues to grow at a high speed due to high levels of leverage in

the country’s real estate sector. Using home foreclosure auction data in Fujian province from 2017

to 2019, we estimate structural parameters in a recurring auction model. The data attest to the

important features in our theoretical model setup: the auction failure rate is high (around 40%); up

to three auctions will be held in a row for a foreclosed property; and potential buyers’ entry costs

are considerable due to the financial constraints and the eligibility screening process.3

Using simulated maximum likelihood with importance sampling (Ackerberg, 2009), our struc-

tural estimation comprises two steps. First, for each auction round and each simulation, we solve

for the equilibrium entry thresholds using the intertemporal indifference conditions. Second, we

calculate the likelihood using the entry thresholds and observable auction outcomes. Our results

suggest that intertemporal considerations play an important role in potential buyers’ entry deci-

sions, which affirms the necessity of incorporating dynamics in the empirical analysis.

3See Section 4.1 for more details.
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Our counterfactual analyses support the theoretical predictions: compared to single-round auc-

tions with the same (first-period) reserve price, the recurring auctions raise the annual efficiency

by 3.40 billion USD (16.60%) and revenue by 2.97 billion USD (15.92%) in China’s home fore-

closure market. Using the optimal reserve price sequences derived from our model can further

improve efficiency by 0.80 billion USD (3.35%) and revenue by 0.66 billion USD (3.06%), re-

spectively. Most of the efficiency and revenue gain is realized by holding a two-round recurring

auction. Increasing the recurring auction rounds from 2 to 3 has a relatively small impact on the

auction outcome.

This paper contributes to the literature on mechanism design with costly entry. Stegeman

(1996) investigates efficiency-maximizing mechanisms in an independent private value (IPV) set-

ting with costly entry. Lu (2009) and Celik and Yilankaya (2009) study revenue-maximizing mech-

anisms within the same framework. These studies all focus on single-round mechanisms in the

sense that messaging and allocation happen within the same period. This single-round assumption

is innocuous with free entry. However, it misleads the auction design when entry is costly. Notably,

in the single-round mechanism design problem, it is impossible for the potential buyers to acquire

any information about others’ values before deciding whether to enter, because the mechanism

only assigns allocation conditional on entry. This paper complements the existing literature by

incorporating the time dimension and considering a dynamic auction setting. We demonstrate how

sorted entry emerges in recurring auctions, which allows potential buyers to update their beliefs

about competitors’ values and make more efficient entry decisions. McAfee and Vincent (1997),

Skreta (2015), and Liu, Mierendorff, Shi, and Zhong (2019) also consider auction games with

the possibility of follow-up auctions. However, they abstract away from entry costs and focus on

the implications of limited seller commitment on the reserve price sequence and optimal auction

design.

We also contribute to the empirical literature in two ways. First, there is no attempt to date to

empirically estimate the auction model parameters (i.e., potential buyers’ value distribution and en-

try costs) in the dynamic setting described above. The empirical auction literature usually focuses

on (or implicitly assumes) the single-round setting where the items that failed to sell previously

will not reappear in future auctions. Building upon previous research on single-round auction esti-

mation (Guerre, Perrigne, and Vuong, 1995, 2000; Hortaçsu and Perrigne, 2021; Laffont, Ossard,
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and Vuong, 1995), this paper proposes a framework for estimating recurring auctions with costly

entry. Our findings suggest that neglecting the dynamics when auctions are recurring can result in

an underestimation of bidders’ value distribution and an overestimation of entry costs. Second, we

contribute to the literature by structurally analyzing the home foreclosure industry. Despite being

a sizable industry with rapidly growing transaction volumes, it has received little attention in the

literature. This paper represents one of the first attempts to utilize a structural approach in this

market. Our structural estimation affords a broad variety of counterfactual analyses and thus helps

inform better designs to promote important social objectives.

The remainder of this paper proceeds as follows: Section 2 lays out the recurring auction

model and discusses the single-round benchmark. Section 3 provides some illustrative examples

and the theoretical results. Section 4 discusses the data and institutional background of home

foreclosure auctions and presents descriptive evidence. Section 5 proposes an empirical framework

to estimate the recurring auction model. Section 6 presents the estimation results. Section 7 shows

the counterfactual analyses. Section 8 concludes the paper. All proofs are relegated to Appendix A.

2 Model

A seller has one item for sale, and her value for the item is vs. There are N potential buyers,

indexed by the set N := {1,2, . . . ,N}. Each potential buyer n ∈ N has a private value vn for

the item. The values of the potential buyers are independently and identically distributed on the

interval [v,v] according to the cumulative distribution function F(·). The seller holds an English

auction or possibly a sequence of English auctions to sell the item.4 Participation or entry in an

auction is costly for potential buyers. The entry cost is K > 0. Potential buyers know their values

at the time they make entry decisions. It is natural to require that vs < v−K.

The timing of the auction game is as follows. An auction is held at time t = 1. If no buyer

shows up and an auction fails at time t,5 the seller will hold another auction at time t +1 until time

4Our results hold for any standard auction format because revenue equivalence can be established in the current
setting. We focus on English auctions for ease of exposition. Also, in the empirical part, our data is from open-outcry
auctions.

5An auction could also fail if some buyers show up but do not bid up to the reserve price. That will not happen in
equilibrium because entry is costly: If a potential buyer would not bid up to the reserve price, he would not enter in
the first place.
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T ≥ 1, after which the seller keeps the item forever. Before the game starts, the seller sets a reserve

price sequence r := (rt)1≤t≤T , where rt is the reserve price in the auction (possibly) held at time t.

If T = 1, we have a single-round auction; if T > 1, we refer to the auction as a recurring auction.

At the beginning of each period, the potential buyers simultaneously and independently decide

whether to incur an entry cost of K to participate in the auction. If any potential buyers choose to

enter, the auction begins and a price clock ascends continuously from the reserve price. The price

clock continues to ascend so long as two or more bidders remain in the auction and stops when all

but one have dropped out. The last bidder remaining in the auction wins the item at the final clock

price, and the auction game ends. If no one enters, the game proceeds to the next period or ends if

this is the last period T .

The common discount factor for the seller and potential buyers is δ ∈ (0,1). As long as the

item has not been sold, the seller derives a flow utility (1− δ )vs from the item in each period.

Everything described above, apart from potential buyers’ private values, is common knowledge.

For the equilibrium analysis, which will be detailed in the next section, it is useful to note

that, conditional on participation, bidding truthfully is the best a bidder can do in both the single-

round auction and the recurring auction. Therefore, throughout the paper, we focus on equilibria

in cutoff strategies, under which a potential buyer participates and bids his value if and only if his

value is above a cutoff. Given that the potential buyers are ex-ante symmetric, we further restrict

our attention to the symmetric equilibrium of the auction game, where the entry thresholds are

identical for the potential buyers.

Assumption 1 (Symmetric Equilibrium in Cutoff Strategies) Throughout the paper, unless oth-

erwise mentioned, we focus on symmetric equilibria in cutoff strategies.

We take the single-round auction as a benchmark since it performs well in terms of both ef-

ficiency and revenue. Celik and Yilankaya (2009) point out that the single-round auction, with

an appropriately chosen reserve price, is optimal among all symmetric single-round mechanisms.

That is, with an appropriately chosen reserve price, the single-round auction can maximize either

the efficiency or the seller’s expected profit. Moreover, the authors provide conditions under which

the single-round auction is optimal among all single-round mechanisms, symmetric or not.6

6Under certain circumstances, an asymmetric equilibrium in a single-round auction can achieve the highest effi-
ciency or revenue (Stegeman, 1996; Lu, 2009). We discuss this in more detail at the end of Section 3.1.
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Notably, a disadvantage of the single-round auction, or any other single-round mechanism, is

that potential buyers cannot learn anything about their rivals’ values before making entry decisions.

This foreshadows an efficiency loss in wasteful entry. In contrast, the recurring auction incorpo-

rates the time dimension, which allows potential buyers to make dynamic entry decisions. As such,

potential buyers have the opportunity to update their beliefs about others’ realized values and to

economize on their entry decisions. For example, if a potential buyer observes that no one has

participated in the previous periods, he would infer that others do not have high values for the item

and thus feel more confident about entry into the auction. This comparison underlies the superior

performance of the recurring auction. We elaborate more on this point in the following section.

3 Illustrative Examples and Equilibrium Analysis

3.1 Illustrative Examples

Before we analyze the general model in detail, it would be beneficial to demonstrate the main

insights through simple examples.

Example 1 There are N = 2 potential buyers whose values are independently and identically

drawn from the uniform distribution on [0,1]. The seller’s value is vs = 0. A potential buyer’s

entry cost is K = 0.2. The common discount factor is δ = 0.97.

In this example, there is a unique equilibrium of the single-round auction with no reserve price

(Tan and Yilankaya, 2006). In the equilibrium, the potential buyers use a cutoff entry strategy:

potential buyer n participates and bids vn in the auction if and only if vn ≥ 0.45.7 This equilibrium

maximizes the expected total surplus among all single-round mechanisms (Stegeman, 1996). The

expected total surplus in this case is 0.39.

Now consider a two-period recurring auction (i.e., T = 2) with a reserve price sequence (r1,r2) =

(0.14,0).8 By Assumption 1, to characterize the equilibrium, we only need to pin down entry

thresholds. Intuitively, a strong potential player (who has a high realized value) tends to enter early

7The cutoff 0.45 is obtained by solving the indifference equation for the marginal type potential buyer:
v[F(v)]N−1 −K = 0.

8This reserve price sequence maximizes the expected total surplus across all reserve price sequences.
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while a weak player tends to wait, because: (i) the strong player loses more if he waits and the

item is bought by other potential buyers, he also loses more to discounting if he wins in the next

period as compared with winning now; and (ii) the weak player has a lower chance of winning in

the current period, which means the entry cost is more likely wasted. We therefore consider the

following cutoff equilibrium structure: potential buyers whose values are above v∗1 enter in the first

period; those with values in between v∗1 and v∗2, with v∗2 ≤ v∗1, enter in the second period; and those

whose values fall below v∗2 never enter. The entry cutoffs can be pinned down by the indifference

conditions of the marginal potential buyers. The idea is that a potential buyer with a cutoff value

should be indifferent between entering now or in the next period (or, if the current period is the last

period, not entering at all). In Example 1, we have that (v∗1,v∗2) = (0.66,0.36). The expected total

surplus in this case is 0.42, which is higher than that in the single-round auction.

To understand the reason behind the comparison in efficiency, it is useful to note that the recur-

ring auction allows the potential buyers to sort their entry over time. This provides an opportunity

for the players to condition their entry on some information they can obtain about potential rivals.

Sorting brings about two benefits to the total surplus: First, weak potential buyers can wait until

they are sure that others are not too strong either, and then enter into the auction. This way, their

entry costs are wasted less often. We refer to this as the economizing on entry benefit. Second,

when an auction fails, the potential buyers update their beliefs about the others. They infer that

the market is less competitive, as no potential rivals have a high enough value to enter in the previ-

ous period.9 So they would be encouraged to enter into the auction, which reduces the possibility

that the item goes unsold. This is reflected by the fact that the entry threshold in the single-round

auction (0.45) is higher than the entry threshold in the recurring auction at t = 2 (0.36). In the

single-round auction, the item remains unsold with a probability of 0.2; whereas in the recurring

auction, the probability is reduced to 0.13. We refer to this as the reducing auction failure benefit.

We use Figure 1 to visualize the two benefits mentioned above. Figure 1(a) shows the entry

decisions in the single-round auction. When both potential buyers’ values are above the entry cutoff

0.45, there is excessive entry: The ex post efficiency would be maximized if the strong potential

buyer is the only participant. The value profiles corresponding to excessive entry are reflected by

the shaded area in the upper right corner. When both potential buyers’ values are below the entry

9In this example, after the first auction fails, potential buyers know that no one has a value above v∗1 = 0.66.
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cutoff, but one of the potential buyers has a value higher than the entry cost (the shaded area close

to the lower left corner), there is no entry, which is not efficient: the total surplus would be raised

if the strong potential buyer were to enter. In all the other unshaded areas, (no) entry is efficient in

equilibrium. We similarly plot the efficient and inefficient areas in terms of entry for the recurring

auction in Figure 1(b). Because players sort their entry over time, both the areas of excessive

entry and inefficient no entry are much smaller as compared with the single-round auction case.10

The difference between the excessive entry areas reflects the economizing on entry benefit, and the

difference between the inefficient no entry areas reflects the reducing auction failure benefit.

Figure 1: Equilibrium Entry in Recurring and Single-Round Auctions.

(a) Entry in the Single-Round Auction. (b) Entry in the Recurring Auction.

Notably, as is pointed out by Samuelson (1985), setting the reserve price equal to the seller’s

valuation maximizes the expected total surplus in the single-round auction. In contrast, to maxi-

mize efficiency in the recurring auction, a non-trivial reserve price at t = 1 would be used in the

recurring auction. This is because the first-period reserve price affects the extent of sorting. If r1 is

0, too many potential buyers would participate in the first period, and this reduces the informative-

ness of observing whether or not the first auction has failed. As a result, the gain from sorting is

10When the item is not allocated in the first period, there is a loss in total surplus from discounting, but that in
general does not offset the gain in more efficient entry.
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not maximized. In Figure 1(b), varying r1 effectively changes the entry threshold in the first period

and thus the areas of the two shaded squares. If the entry threshold is too low (resp. too high), the

excessive entry at t = 1 (resp. t = 2) area will grow too big and squeeze out the economizing on

entry benefit.

Figure 2 plots how the maximized efficiency (by varying reserve prices) changes along with the

total number of periods. Compared to the single-round auction, the 6-period recurring auction in-

creases efficiency by around 11% of the first-best efficiency level, given by E{maxn∈N [max(vn −

K − vs,0)]}. It is clear that the value of having one more auction or period diminishes over time.

The majority of the efficiency improvement over the single-round auction is realized after having

the second and the third period.

Figure 2: Maximized Expected Total Surplus in Single-Round and Recurring Auctions While
Varying T .

Notes: The numbers above the bars (and not in the square brackets) are the values of maximized
expected total surplus in the auctions, and the numbers in the square brackets are those values as
a percentage of the full efficiency. The numbers in or pointing to the upper (red) parts of the bars
are the efficiency gain of extending the auction game for 1 more period. Again, the numbers in the
square brackets are those values as a percentage of the full efficiency.

Next, we consider the revenue comparison between the revenue-maximizing single-round mech-

anism and the recurring auction. Because the recurring auction outperforms single-round mech-
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anisms in terms of efficiency, one might expect the recurring auction (with appropriately chosen

reserve prices) to also generate more revenue for the seller. After all, the seller’s revenue is part of

the total surplus. Celik and Yilankaya (2009) set up the single-round mechanism design problem

with costly entry and study revenue maximization. From their results, it follows that a second-price

auction with a reserve price of 0.35 maximizes the revenue across all single-round mechanisms in

Example 1. The maximized revenue is 0.25. In contrast, with the reserve price sequence set to

(r1,r2) = (0.4,0.37), the recurring auction generates a revenue of 0.26.

Finally, we briefly discuss another example to further illustrate the recurring auction’s effi-

ciency dominance over the single-round auction. With costly entry, it is well-known that the effi-

ciency may not be monotonically increasing in the number of potential buyers (Samuelson, 1985).

This is because, with more potential buyers, each potential buyer worries more about prospective

competition and is more inclined to skip the auction to save entry costs. We demonstrate that re-

curring auctions can reverse this counterintuitive result using the following example taken from

Stegeman (1996).

Example 2 There are N ≥ 1 potential buyers whose values are independently and identically

drawn from the uniform distribution on [1,2]. The seller’s value is vs = 0. A potential buyer’s

entry cost is K = 0.3. The common discount factor is δ = 0.97.

The diamond markers in Figure 3 show how the expected total surplus in the single-round auction

changes with the number of potential buyers.11 It can be seen that the efficiency actually decreases

with more potential buyers. This reflects that coordinating and economizing on entry is difficult in

a single-round setting. Without coordination, the prospect of excessive competition distorts entry

and harms efficiency. The triangle and circle markers show the maximized expected total surplus

(across all reserve price sequences) in 2- and 3-period recurring auctions, respectively. As the

potential buyers sort their entry over time in recurring auctions, the efficiency is monotonically

increasing in the number of potential buyers.

Stegeman (1996) points out that coordination may happen in single-round auctions in the form

of asymmetric equilibria. Consider the N = 2 case: apart from the symmetric equilibrium where

a potential buyer enters if his value is above 1.24, there is also an asymmetric equilibrium where

11Recall that a reserve price equal to vs = 0 maximizes the expected total surplus in the single-round auction.
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Figure 3: Maximized Expected Total Surplus in Single-Round and Recurring Auctions While
Varying N.

one bidder always enters and the other enters if his value is above 1.77. The expected total surplus

is 1.22 in the asymmetric equilibrium,12 which is greater than that in the symmetric equilibrium,

1.20. However, relying on asymmetric equilibria to coordinate entry and improve efficiency is

precarious, as an asymmetric equilibrium need not always exist.13 Moreover, coordination in

the form of asymmetric equilibrium may not be very effective as compared with the sorted entry

pattern in recurring auctions. As Figure 3 shows, in the N = 2 case, the efficiencies in the 2- and

3-period recurring auctions are 1.23 and 1.26, respectively.

In a similar vein, Celik and Yilankaya (2009) and Lu (2009) provide examples where asymmet-

ric equilibria in single-round auctions generate higher expected revenue for the seller. However,

these improvements are insignificant and once dynamics are incorporated, the symmetric equilibria

in recurring auctions lead to much more sizable improvements.14,15

12This is the maximum efficiency that can be achieved by any single-round mechanism.
13In Example 1, there is no asymmetric equilibrium in cutoff strategies. More generally, Tan and Yilankaya (2006)

provide a sufficient condition for there to be a unique symmetric equilibrium and no asymmetric equilibrium in the
class of cutoff strategies equilibria.

14In Example 1 of Celik and Yilankaya (2009), there are two potential buyers whose valuations are distributed
according to F(v) = v4 on [0,1], and the participation cost is K = 0.4. In the revenue-maximizing single-round
auction, the entry cutoffs are asymmetric. A cutoff pair (0.816,0.92) generates a profit of 0.2525 for the seller, whereas
the optimal symmetric cutoff, 0.868, generates a profit of 0.25155. However, suppose δ = 0.97, the seller’s expected
revenue is 0.2935 in (the symmetric equilibrium of) a two-period recurring auction with optimally selected reserve
prices.

15In the example of Lu (2009), there are two potential buyers whose valuations are distributed uniformly on [0.6,1],
and the participation cost is K = 0.2. A cutoff pair (0.66,0.86) generates a profit of 0.431 for the seller, whereas the
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3.2 Equilibrium Analysis

We now proceed to the formal analysis of the model. For notational ease, we denote the CDF of

the highest value among N −1 potential buyers by G(·). That is,

G(·) := [F(·)]N−1.

Note that when bidders compete in an auction, there will be no continuation games as the item will

be sold in the current period. As a result, truthful bidding is the best that a bidder can do conditional

on entry. We focus on the symmetric Perfect Bayesian Equilibrium (PBE) with a cutoff structure

of the recurring auction game. In equilibrium, potential buyers’ entry is governed by a sequence

of cutoffs v∗ := (v∗t )1≤t≤T , where v∗t is the lowest type that will enter at time t if an auction is held

at that time (which implies all previous auctions have failed).16 Given that all the other potential

buyers enter according to the cutoff strategy and bid truthfully upon entry, a type-v potential buyer’s

interim expected payoff from entering in the time-t auction is given by Πt(v;v∗)/G(v∗t−1), where

Πt(v;v∗) = δ
t−1

[∫ min{max{v,v∗t },v∗t−1}

v∗t
(v− x)dG(x)+ (v− rt)G(v∗t )−G(v∗t−1)K

]
. (1)

We are now ready to characterize the symmetric PBE using the marginal potential buyers’ indif-

ference conditions. Again, the idea is that a potential buyer with a cutoff type should be indifferent

between entering in the current period or not.

Proposition 1 (Equilibrium Characterization) A PBE is characterized by a sequence of (weakly)

decreasing entry thresholds, v∗ := (v∗t )
T
t=0, with v∗0 := v. In equilibrium, potential buyers with

values between v∗t−1 and v∗t enter at time t. If no period is skipped for sure—i.e., v∗t−1 > v∗t for

all 1 ≤ t ≤ T —the entry thresholds solve the following indifference conditions: Πt(v∗t ;v∗) =

Πt+1(v∗t ;v∗),17 or equivalently,

G(v∗t )(v
∗
t − rt)−KG(v∗t−1) =

δ

[
G(v∗t )(v

∗
t −K)−

∫ v∗t
v∗t+1

xdG(x)− rt+1G(v∗t+1)
]

, if t < T ,

0, if t = T .
(2)

optimal symmetric cutoff, 0.76, generates a profit of 0.427. However, suppose δ = 0.97, the seller’s expected revenue
is 0.467 in (the symmetric equilibrium of) a two-period recurring auction with optimally selected reserve prices.

16It is convenient to let v∗0 := v.
17We let ΠT+1(·) = 0, since there will be no follow-up auctions after time T .
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If some periods, say, the periods from t0 to t1, are skipped for sure, then the equilibrium conditions

for these periods become

v∗t0−1 = v∗t0 = . . .= v∗t1 and

Πt0−1(v∗t0−1;v∗) = Πt1+1(v∗t0−1;v∗) ≥ maxt0≤t≤t1 Πt(v∗t0−1;v∗), if t0 > 1;

Πt1+1(v∗t0−1;v∗) ≥ maxt0≤t≤t1 Πt(v∗t0−1;v∗), if t0 = 1.

Conditional on entry, bidders bid truthfully in the auction.

With the equilibrium characterization, we now compare the efficiency in recurring auctions

and that in single-round auctions. Because of the economizing on entry benefit and the reducing

auction failure benefit laid out in Section 3.1, the following efficiency dominance result can be

obtained.

Theorem 1 (Efficiency Dominance) Suppose that N ≥ 2 and K > 0. Then a recurring auction

with an appropriately chosen reserve price sequence will achieve strictly higher efficiency than the

symmetric equilibrium in any single-round auction.

Further, we show that the dominance of recurring auctions over single-round auctions also

applies to the seller’s expected profit.

Theorem 2 (Revenue Dominance) Suppose that N ≥ 2 and K > 0. Then a recurring auction with

an appropriately chosen reserve price sequence will generate strictly higher profit for the seller

than the symmetric equilibrium in any single-round auction.

3.3 Recurring Auction Design

In this part, we study the design of recurring auctions to maximize either efficiency or the seller’s

profit. It is useful to note that the equilibrium conditions in Proposition 1 establish a mapping

between reserve price sequences and the entry threshold sequences. The mapping allows us to

reformulate the problem of choosing a reserve price sequence to that of choosing an entry threshold

sequence. The reformulation will greatly simplify things, since it is generally infeasible to obtain

an analytical solution of the entry threshold sequence given an arbitrary reserve price sequence, but
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the reverse is easy. In fact, an arbitrary entry threshold sequence v∗ which is weakly decreasing

can be induced by the reserve price sequence r(v∗), with rt(v∗) given by the following:18

rt(v∗) =
1

G(v∗t )

 ∑
T
τ=t(1−δ )δ τ−tG(v∗τ)v

∗
τ −KG(v∗t−1)+

∑
T−1
τ=t δ τ−t+1 ∫ v∗τ

v∗
τ+1

xdG(x)+ δ T−t+1G(v∗T )v
∗
T

 . (3)

We now present and solve the efficiency and revenue maximization problem with respect to

entry thresholds.

Efficiency Maximization Given a weakly decreasing entry threshold sequence v∗, the expected

total surplus in the recurring auction is

T S(v∗) =
T

∑
t=1

δ
t−1

{∫ v∗t−1

v∗t
(x− vs)d[F(x)]N −N[F(v∗t−1)]

N−1[F(v∗t−1)−F(v∗t )]K
}
+ vs, (4)

where
∫ v∗t−1

v∗t
(x−vs)d[F(x)]N is the expected gain in allocative efficiency in period t, and the second

term in the bracket is the expected entry cost in period t. The efficiency maximization problem is

max
v∗

T S(v∗) s.t. v∗t−1 ≥ v∗t for all 1 ≤ t ≤ T . (5)

The key to solving the problem is to show that the constraint v∗t−1 ≥ v∗t does not bind. The reason

that v∗t−1 > v∗t in the optimum can be seen by discussing two cases. First, if some final periods

are skipped—i.e., v∗t0−1 > v∗t0 = v∗t0+1 = . . .= v∗T for some t0—then the seller is effectively holding

a single-round auction at time t0 − 1, which cannot be efficient by Theorem 1. Second, if some

periods other than the final periods are skipped—i.e., v∗t0 = v∗t0+1 > v∗T for some t0—then the seller

could in effect move every period after t0 to one period earlier by using the entry threshold sequence

v∗′ = (v∗1, . . . ,v∗t0 ,v∗t0+2, . . . ,v∗T ,v∗T ). This is more efficient than the original entry threshold sequence

v∗ since the efficiency gains in periods after t0 are realized earlier. Having established that the

constraint does not bind, the solution to (5) is characterized by the first-order conditions. Formally,

we have the following result.

Theorem 3 (Efficient Recurring Auction) Suppose the seller aims to maximize the expected total

surplus by selecting a reserve price sequence of the recurring auction. Then in the efficient design,

18If a certain period is skipped for sure, say v∗t0 = v∗t0+1 for some 1 ≤ t0 ≤ T , multiple reserve prices can be used for
that period. But they all lead to the same equilibrium outcome.
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the equilibrium entry thresholds v∗ solve the following:
{[

F(v∗t−1)

F(v∗t )

]N−1
−δ

NF(v∗t )−(N−1)F(v∗t+1)

F(v∗t )

}
K − (1−δ )(v∗t − vs) = 0, if t < T ,[

F(v∗t−1)

F(v∗t )

]N−1
K − (v∗t − vs) = 0, if t = T .

(6)

The corresponding reserve price sequence can be obtained from (3).

To see the intuition behind Theorem 3, let us consider the social gain and loss of making

the marginal potential buyer with value v∗t enter at time t + 1, instead of time t. The social gain

manifests as saving in entry costs. Conditional on time t is reached (i.e., no one has shown up

in previous auction rounds), the cost of participating at time t is K. However, if the marginal

seller participates at time t + 1, he incurs entry cost only if no one shows up at time t, so the ex-

pected entry cost is δ [F(v∗t )/F(v∗t−1)]
N−1K. Consequently, the social gain of cost saving is {1−

δ [F(v∗t )/F(v∗t−1)]
N−1}K. The social loss consists of two parts. First, in the event that all the other

potential buyers have values below v∗t , there is a loss of allocating the item one period later. Specif-

ically, the loss from discounting is (1−δ )[F(v∗t )/F(v∗t−1)]
N−1(v∗t − vs). Second, if the marginal

potential buyer had entered in period t, entry by other potential buyers in period t + 1 could have

been avoided. Since there are N −1 other potential buyers and the probability of each one of them

entering in period t + 1, conditional on period t + 1 is reached, is [F(v∗t )−F(v∗t+1)]/F(v∗t ), the

waste of period-(t + 1) entry is δ [F(v∗t )/F(v∗t−1)]
N−1(N −1)[F(v∗t )−F(v∗t+1)]/F(v∗t )K.

To maximize the expected social surplus, the choice of the entry thresholds must equalize the

social gain and the social loss. We rewrite the condition in Theorem 3 for the t < T case as follows

to reflect the tradeoff.{
1−δ

[
F(v∗t )

F(v∗t−1)

]N−1
}

K︸ ︷︷ ︸
social gain in entry cost saving

= (1−δ )(v∗t − vs)︸ ︷︷ ︸
social loss of

delayed allocation

+δ

[
F(v∗t )

F(v∗t−1)

]N−1

(N −1)
F(v∗t )−F(v∗t+1)

F(v∗t )
K︸ ︷︷ ︸

social loss of period-(t + 1) entry

.

Profit Maximization The problem of maximizing profits requires additional effort as it is non-

trivial to derive the expression of the seller’s expected profit in terms of entry thresholds v∗. To do

that, we first express the seller’s expected profit as a function of both entry thresholds and reserve
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prices:

R(v∗;r) =
T

∑
t=1

δ
t−1

 N(N −1)
∫ v∗t−1

v∗t
(x− vs) f (x)[F(v∗t−1)−F(x)][F(x)]N−2dx

+N[F(v∗t−1)−F(v∗t )][F(v
∗
t )]

N−1(rt − vs)

 ,

where the first line in the bracket is the expected profit in the event that at least two bidders show up

at time t, and the second line in the bracket is the expected profit when exactly one bidder presents

at time t (so the reserve price is charged).

Next, we plug r(v∗) given by (3) into R(v∗;r). After algebraic manipulation, we have that

R(v∗;r(v∗)) = δ
T N[1−F(v∗T )]G(v∗T )v

∗
T+

T

∑
t=1

δ
t−1

 N
∫ v∗t−1

v∗t
x[1−F(x)]dG(x)+N(1−δ ) [1−F(v∗t )]G(v∗t )v

∗
t

−NG(v∗t−1)[F(v
∗
t−1)−F(v∗t )]K − vs

[
(F(v∗t−1))

N − (F(v∗t ))
N]

 .
(7)

The profit maximization problem becomes

max
v∗

R(v∗;r(v∗)) s.t. v∗t−1 ≥ v∗t for all 1 ≤ t ≤ T . (8)

A similar technique as in the efficiency part would establish that the constraint v∗t−1 ≥ v∗t does not

bind in the optimum. As a result, Theorem 4 characterizes the profit-maximizing recurring auction.

Theorem 4 (Profit-Maximizing Recurring Auction) Suppose the seller aims to maximize the

seller’s profit by selecting a reserve price sequence of the recurring auction. Then in the profit-

maximizing design, the equilibrium entry thresholds v∗ solve the following:
{[

F(v∗t−1)

F(v∗t )

]N−1
−δ

NF(v∗t )−(N−1)F(v∗t+1)

F(v∗t )

}
K − (1−δ )

[
v∗t −

1−F(v∗t )
f (v∗t )

− vs

]
= 0, if t < T ,[

F(v∗t−1)

F(v∗t )

]N−1
K −

[
v∗t −

1−F(v∗t )
f (v∗t )

− vs

]
= 0, if t = T .

(9)

The corresponding reserve price sequence can be obtained from (3).

Notably, the condition for profit-maximizing (9) is similar to the condition for efficiency-

maximizing (6). In fact, the profit-maximizing condition can be obtained by replacing v∗t with

the virtual value v∗t − [1−F(v∗t )]/ f (v∗t ) in the relevant places of the efficiency-maximizing con-

dition. This is intuitive, as the mechanism design literature suggests that the virtual value accrues

to the seller while the value contributes to social surplus.

In what follows, we take our model to a practical setting and empirically estimate the model
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parameters. The structural estimation allows us to quantitatively identify the efficiency gain and

revenue gain brought about by recurring auctions. We also conduct counterfactual analyses to

inform a better auction design.

4 Industry Background, Data, and Descriptive Evidence

This section introduces the background of the home foreclosure auction market in China and

presents the data, summary statistics, and some descriptive evidence.

4.1 Industry Background

In China, the market for home foreclosure auctions is substantial, with a transaction volume of

196 billion CNY (28 billion USD) in 2019. Since 2014, it has become a common practice for

Chinese local courts to conduct foreclosure auctions through online platforms, with over 90% of

these auctions taking place on Alibaba. Starting in 2017, the supreme court mandates that auctions

for foreclosed properties must be held publicly and online.

When a foreclosed property is up for auction, the government will commission a company to

assess the property’s market value. This assessment price will be used as a benchmark to determine

the reserve price in the auction and any follow-up auctions. In the initial auction, it is required by

law that the reserve price is set above 70% of the assessment price. For more than 60% of the

properties in our sample, the initial reserve price is between 70% to 80% of the assessment price.

Information regarding the property, the assessment price, and the reserve price will be posted

online one month prior to the auction date. An open outcry auction is held on the auction date if

any potential buyer qualifies as a bidder and participates. The open outcry stage lasts for 24 hours.

During this stage, bidders can observe the standing bid and decide whether to raise their own bid.

If no bid (above the reserve price) is received, the auction fails. If a property is not successfully

sold in the initial auction, the government will hold a follow-up auction within two months. The

median time gap between two auction rounds in our sample is 36 days. Figure fig. 4 presents the

time gap between two auction rounds.

The law mandates that the reserve price in the second auction is set above 80% of the reserve

price in the initial auction. In practice, the vast majority of second-round reserve prices are set at
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exactly 80%.19 If the second auction also fails, the property will be listed again for the third and

final auction.20 According to the law, the reserve price in the third round must remain the same as

it was in the second auction.

Figure 4: Distribution of the Time Gap between Two Consecutive Auctions.

Notes: The medium of the time gap is 36 days.

Purchase and reselling restrictions in the housing market discourage speculators from partici-

pating in home foreclosure auctions. Households in most cities within our sample are allowed to

buy at most one or two houses. Some cities have stricter purchase restrictions. Reselling the prop-

erty within two years of purchase will result in an additional tax of 5.6%. As a result, participants

in home foreclosure auctions are likely to be ordinary buyers rather than speculators.

Entry costs in the auction market are non-negligible. Potential buyers must fulfill several re-

quirements to qualify as bidders, including depositing 10% to 20% of the reserve price before the

19In our sample, the average reserve price in the second round is 82% of the reserve price in the initial auction.
20The third auction is referred to as the liquidation stage by the court. In 2017, there was no difference between this

stage and the first two rounds, so the liquidation stage can be treated simply as the third auction round. In 2018, the
supreme court of Fujian province (where our data is from) changed the auction rule of the liquidation stage. Following
the change, a foreclosed property can be listed for sale at the liquidation stage for a 60-day period. If a bid is received
during this period, an open out-cry auction is initiated, and other qualified bidders can participate within a 24-hour
timeframe. Since it is impossible to finish all the paperwork and qualify for participation within 24 hours, bidders’
cannot condition their entry decisions on others’ actions. For the sample period after the policy change, we continue to
treat the liquidation stage as the third round of the recurring auction game. This simplification offers great tractability
without much loss. As we shall see, the outcomes of two-period recurring auctions are similar to those of three-period
auctions, indicating that the value of having additional rounds beyond the second is limited. As a robustness check, we
use the 2017 subsample to estimate the recurring auction model. The results (reported in Appendix B.3) are similar to
those obtained from the full sample.
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auction to demonstrate their eligibility. Furthermore, the winning bidder must pay the full amount

within 5 working days, which poses a financial challenge for home buyers as obtaining a mort-

gage from a bank within 5 working days is infeasible. Along with the liquidity cost, there are also

bureaucracy costs associated with preparing documents to participate in the auction.21

4.2 Data

The home foreclosure auction data used in this paper comes from CnOpenData, a data consulting

company. CnOpenData has collected information on home foreclosure auctions via Alibaba’s dig-

ital platform since 2017. The dataset contains detailed information about each auction, including a

unique identification number, the deal price (if any), the reserve price, the number of bidders, and

the bidding records of each bidder. We also observe the assessed value, area, and location of the

property being sold.

Our data consists of home foreclosure auctions that took place in Fujian province from 2017

to 2019. The province’s population is approximately 41 million, roughly equivalent to that of

California. Its per capita GDP is 15,500 USD. Our sample includes a total of 11675 auctions

for 7973 foreclosed homes.22 During the sample period, the total transaction volume of home

foreclosure auctions in Fujian is 9.2 billion CNY, or 1.3 billion USD.

Table 1 presents the recurring pattern of the home foreclosure auctions. The auction failure

rate stands at 38% in the first round and becomes 31% in the second round. It increases to 68% in

the third and final round, possibly due to that there is no reserve price reduction from the second

to the third round. As can be seen in the table, there is some attrition across auction rounds. In

the first round, 3,002 houses were unsold, out of which 150 houses never appeared in subsequent

auctions. In the second round, 889 auctions failed, and 850 of those houses entered the third

stage afterward. Overall, the attrition rate is around 5%. Attrition between auction rounds may be

caused by various reasons, such as the foreclosed property owner securing enough funds to pay off

their outstanding debts, legal complications arising for either the lender or the foreclosed property

owner, or the lender and owner achieving an agreement.23 We incorporate the possibility of houses

21The cost of services that assist with filing the paperwork is approximately 100 USD.
22In our analysis, we focus on foreclosed homes and exclude other types of foreclosed properties, such as parking

spaces, shops, commercial apartments, and factories, from our sample.
23In Appendix B.4, we show that the observable characteristics of the houses that experience attrition do not differ

20



“disappearing” when setting a discount factor. For our empirical analysis, we exclude the unsold

properties that disappeared from the market before the third round.24

Table 1: Number of Auctions across Rounds.

First auction Second auction Third auction

Success 4971 1963 271
Fail 3002 889 579
Total 7973 2852 850
Auction failure rate 0.38 0.31 0.68

Table 2 presents the summary statistics of the main variables used in this paper. In Table 2,

auctions are pooled together across rounds. The average assessed value for a house is about 1.43

million CNY (210 thousand USD), which is approximately 108 thousand CNY (16 thousand USD)

higher than the average deal price. The average reserve price is 1.12 million CNY (165 thousand

USD). The overall auction success (resp. failure) rate is 63% (resp. 37%). As the number of

potential buyers cannot be directly observed, we construct a proxy using the number of individuals

who have bookmarked and browsed the properties online. Specifically, the number of potential

buyers is defined as the number of individuals who have shown interest online, divided by 1000,

plus the number of entrants.25 We use the properties’ geographical locations to compute their

distance to the city center.

The home foreclosure auction market represents an exemplary empirical setting for our re-

curring auction model. In particular, the auction failure rates are high, and the entry costs are

sizable. Before diving into the structural analysis, we first present some reduced-form evidence of

dynamics and intertemporal tradeoffs in the market.

significantly from those of the other houses.
2411411 auctions for 7772 foreclosed homes remain after removing attrited properties.
25Our results are robust to alternative definitions of potential entrants using factors other than 1/1000. The estimation

results for factors 1/500 and 1/1500 are reported in Appendix B.2.
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Table 2: Summary Statistics.

Percentiles

Mean Std. dev. 0.25 0.5 0.75 Obs

Deal price (10K CNY) 132.71 123.71 56.00 88.35 157.24 7201
Assessment price (10K CNY) 143.52 144.00 59.09 90.52 162.69 11411
Reserve price (10K CNY) 111.79 119.70 44.00 69.23 124.50 11411
Success 0.631 0.483 11411
Number of bidders 3.29 3.98 0 1 5 11411
Number of potential entrants 9.58 6.01 5 8 13 11411
Area (m2) 130.11 45.75 97.19 127.90 155.67 11411
Distance to city center (km) 7.24 14.00 1.26 2.40 5.55 11411

Notes: (1) We pool auctions across rounds. (2) The number of potential entrants is con-
structed using the number of individuals who have bookmarked and browsed the proper-
ties online and the number of actual entrants.

4.3 Hedonic Housing Price Regression

We use the following hedonic regression to investigate how various factors affect the deal price in

home foreclosure auctions, with special emphasis on the effects of auction rounds:

log(pi) = α0 +α1 log(assessi)+α2areai +α3 log(disti)

+α4Dround=2,i +α5Dround=3,i +α6 log(reservei)+ηt + εi.
(10)

Specifically, pi is the deal price, assessi represents the assessment price, areai is the construc-

tion area of the property, and disti denotes property i’s distance to the city center. Dround=2,i and

Dround=3,i are dummies that switch on if the auction round is two and three, respectively. The

auctions in the first round are set as the base group. reservei is the reserve price in the (successful)

auction. ηt controls for the year-by-month fixed effects. Table 3 reports the regression results

with gradually added controls. Column (5) corresponds to the specification in Equation (10). All

coefficients are significant at the p < 0.01 level.

The regression results suggest that the assessment price accurately reflects the housing value,

as its coefficients are close to 1 in all specifications, except for Column (5). In Column (5), the

reserve price is also included in the regression, which is highly correlated with the assessment

price. Column (1) shows that assessment price alone can explain 93% of the variation in the deal
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Table 3: Hedonic Regression Results

(1) (2) (3) (4) (5)
log(deal price)

log(assessment price) 0.981 0.981 0.988 0.991 0.277
(0.003) (0.003) (0.003) (0.003) (0.015)

round=2 -0.204 -0.199 -0.194 -0.098
(0.005) (0.005) (0.005) (0.005)

round=3 -0.306 -0.299 -0.289 -0.216
(0.011) (0.011) (0.011) (0.010)

area -0.016 -0.025 -0.016
(0.005) (0.005) (0.005)

log(distance to city center) -0.022 -0.023 -0.014
(0.002) (0.002) (0.002)

log(reserve) 0.714
(0.014)

Year-by-month fixed effects X X
Observations 7201 7201 7201 7201 7201
R2 0.933 0.949 0.950 0.953 0.965

Notes: (1) The first-round auctions (round=1) are set as the base group, and the
corresponding coefficient is absorbed. (2) Standard errors in parenthesis. (3)
All coefficients are significant at the p < 0.01 level.

price.

Column (5) demonstrates the effects of auction rounds on the deal price after controlling for

the reserve price. The transaction price for a property sold in the second round is 9.8% lower than

a property sold in the first round. The price reduction is 21.6% for a property sold in the third

round.

These findings support the sorted entry pattern predicted by our theoretical model. That is,

potential buyers with high private values tend to participate in early auction rounds, while weak

potential buyers tend to wait and enter late. The sorted entry pattern offers an explanation for lower

prices in later auction rounds. Alternatively, if sorting is absent and each auction independently

draws a new set of potential buyers, the auction round should not have a significant impact on the

deal price. While other factors such as the “stigma” effect may also negatively impact the auction

prices, they are likely to be much smaller in magnitude than the estimates in Table 3.26

26For instance, Cortés, Singh, Solomon, and Strahan (2022) suggest that the size of the “stigma” effect in the
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Finally, we note that conditional on the assessment price, the area and the distance to the city

center negatively affect the deal price, but the magnitude is small. One explanation is that the

construction area is over-accounted, and the distance to the city center is under-accounted in the

calculation of the assessment price.

5 Empirical Strategy

In this section, we specify our empirical model, introduce the simulated maximum likelihood

method, and briefly discuss the sources of identification.

5.1 Empirical Model

Our empirical model is specified as follows. For property i, we assume each potential buyer’s

value follows a truncated log-normal distribution, i.e., vn ∼ T RLN(µi,σi,v,v), where µi and σi

are the location parameters of the log-normal distribution, and v and v are the lower and upper

truncation bounds.27 Then the auction setting for property i is described by the vector of parameters

Λ̃i = (µi,σi,Ki;Ni,T ,δ ,ri), where Ki is the entry cost, Ni is the number of potential buyers, T is

the maximum number of auction rounds, δ is the discount factor, and ri = (rti)1≤t≤T is the reserve

price sequence.

The parameters (Ni,T ,δ ,ri) can be obtained using information from data. As discussed in

Section 4.2, the number of potential buyers is proxied using the number of individuals who have

bookmarked and browsed the property online. We set T = 3 to reflect the institutional setup and let

δ = 0.95, which encompasses both discounting and the probability of a property being withdrawn

from the market. For the auctions that actually happened, we can observe the reserve prices. But if

a property is sold in either the first period or the second period, we cannot observe the full reserve

price sequence, as the subsequent auctions never took place. In such cases, we follow the common

practice we see in the data and assume that the second-period reserve price is 80% of the initial

reserve price, and the third-period reserve price is the same as the second-period reserve price.

Australian home auction market is approximately 1%.
27In practice, we set the lower bound v to be sufficiently low and the upper bound v to be sufficiently high, thereby

rendering the truncation of the distribution negligible.
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Our objective is to identify the value distribution parameters (µi,σi) and the entry cost Ki in

the home foreclose auctions. For notational ease, we define

Λi := (µi,σi,Ki).

Given a set of observables Xi, including a constant, the logarithm of the assessment price, the area,

and the logarithm of the distance to city center, we assume the auction parameters Λi = (µi,σi,Ki)

are governed by the following truncated normal distributions:28,29

µi ∼ T RN(Xiβµ ,ωµ ,1,7), (11)

σi ∼ T RN(Xiβσ ,ωσ ,0.01,3), (12)

Ki ∼ T RN(XiβK ,ωK ,0,15), (13)

where (βµ ,βσ ,βK) are the coefficients of the covariates, and (ωµ ,ωσ ,ωK) are the standard de-

viations of the untruncated distributions. We denote the set of parameters to be estimated by B.

Formally,

B := (βµ ,βσ ,βK ,ωµ ,ωσ ,ωK).

Our model specification allows for cross-auction heterogeneity in the structural parameters,

which is crucial given the considerable variation in assessment price, deal price, area, and location

across the auctions in our sample, as shown in Table 2.

5.2 Simulated Maximum Likelihood

To estimate our structural model, we adopt the simulated maximum likelihood (SML) method with

importance sampling (Ackerberg, 2009; Roberts and Sweeting, 2013). We denote the observable

auction outcome for property i by yi, which consists of the number of bidders, the winning bid,

and the transaction round. Given the outcome yi and the auction parameters Λi, one can calcu-

late the likelihood of the outcome, denoted by Li(yi|Λi). The calculation steps are detailed in

28We denote by T RN(µ ,σ ,D,D) a truncated normal distribution with location parameters µ and σ and truncation
bounds D and D.

29Note that µi, σi and Ki are in 10K CNY (1.5K USD). The truncation bounds are chosen to cover sensible ranges
of these parameters. For example, with µi = 7, the mean of the value distribution T RLN(µi,σi,v,v) is above exp(7) =
1096, which is greater than the highest deal price in our sample.
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Appendix B.1. Then the log-likelihood function can be written as:

L(B;X) =
P

∑
i

log
[∫

Li(yi|Λi)φ (Λi|B,Xi)dΛi

]
, (14)

where P denotes the number of properties, φ (Λi|B,Xi) is the probability density of Λi conditional

on Xi and B, which can be calculated from (11), (12), and (13).

Since evaluating the log-likelihood by simulation is computationally expensive,30 we follow

Ackerberg (2009) to reduce the computational burden using importance sampling. Specifically,

we rewrite the integral in equation (14) as follows:∫
Li(yi|Λi)φ (Λi|B,Xi)dΛi =

∫
Li(yi|Λi)

φ (Λi|B,Xi)

g(Λi|Xi)
g(Λi|Xi)dΛi, (15)

where g(Λi|Xi) is the importance sampling density which does not depend on the parameters B. In

practice, we pick an initial guess B0 and use φ (Λi|B0,Xi) as the importance sampling density.

We then simulate the right-hand side of (15) by drawing S = 1000 realizations of Λi accord-

ing to the importance sampling density, g(Λi|Xi). As compared to φ (Λi|B,Xi), the importance

sampling density makes Λi draws independent of B. The simulation is given by

1
S ∑

s
Lis(yis|Λis)

φ (Λis|B,Xi)

g(Λi|Xi)
, (16)

where Λis denotes a representative draw. The benefit of the importance sampling approach can be

clearly seen from (16): When B changes, it is not necessary to draw a new set of realizations of Λi

and reevaluate Lis(yis|Λis). Instead, the same set of S = 1000 simulations can be used, and only

φ (Λis|B,Xi)/g(Λi|Xi) needs to be reevaluated, which is significantly less time-consuming.

The flow chart in panel (b) of Figure 5 shows the estimation steps of the simulated maximum

likelihood method with importance sampling. As a comparison, panel (a) displays the estimation

process that does not involve importance sampling.

We utilize a computer cluster to evaluate Lis(yis|Λis) for all properties and simulations in par-

allel, further reducing the computation time for Step 1 in Figure 5(b). After obtaining the results,

we search for B that maximizes the simulated likelihood. Standard errors are computed using a

bootstrapping method where properties are resampled 200 times.

30To put it into perspective, suppose we draw S = 1000 realizations of Λi to simulate the likelihood for a given B.
We would need to solve for the equilibrium S×P times. Given a sample size of 7,772 properties and that each solving
takes 15 seconds on average, the evaluation would take approximately 1350 days.
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Figure 5: Estimation Steps with and without Importance Sampling.

(a) SML without Importance Sampling. (b) SML with Importance Sampling.

5.3 Identification

While we use a parametric model for estimation, we informally discuss identification here. Absent

unobserved heterogeneity across auctions, the identification would be straightforward (Gentry and

Li, 2014). To see the intuition, suppose there is sufficient exogenous variation in equilibrium entry

thresholds, which may be driven by variation in the number of potential entrants, entry costs, and

reserve prices. Then bidders’ value distributions can be obtained from empirical bid distributions

when the entry threshold (in the first auction round) is sufficiently low. As entry thresholds vary,

the bid distribution in a particular auction round will be truncated at the corresponding entry thresh-

old. Then the expected payoff of the marginal type can be calculated using the recovered value

distribution. In the final auction round, the expected payoff of the marginal type should equal 0,

which helps identify the entry costs.

Recent empirical studies of auctions have pointed out the importance of accounting for auction-

specific heterogeneity that is known to the market participants, but not the econometrician (Kras-

nokutskaya, 2011; Athey, Levin, and Seira, 2011; Roberts and Sweeting, 2013). In particular,
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unobserved heterogeneity helps explain within-auction bid correlation conditional on observable

sale characteristics. Because unobserved heterogeneity brings difficulty to identification (Athey

and Haile, 2002), this literature adopts a parametric approach. In the home foreclosure auction

market, it is plausible that potential buyers may be better informed about some traits of the fore-

closed home and the neighborhood than the econometrician. We therefore follow the literature and

estimate a parameterized model with unobserved heterogeneity.

The sources of identification for our model parameters are as follows. First, the identification

of the mean value parameter µ is based on winning bids or transaction prices. Higher transaction

prices correspond to a higher µ . Second, the scale parameter σ reflects the extent to which potential

buyers disagree on the value of a given property, and is identified through variations in transaction

prices across auctions, conditional on auction characteristics. Third, the entry cost K is identified

through potential buyers’ entry decisions across auction rounds. If the entry cost is high, potential

buyers would be reluctant to enter in the first period and tend to wait until the next period to ensure

that there are no strong competitors.

6 Parameter Estimates

Having discussed our empirical strategies, we now report our parameter estimates in Table 4.

The estimation results of the recurring auction model are reported in Panel A. As a comparison,

we also estimate a single-round model using the same data and the same parametric distribution

assumptions. In the single-round model, we ignore the links between auction rounds for the same

property and treat them as independent auctions. The estimation results for the single-round model

are presented in Panel B of Table 4.

As Panel A shows, the assessment price accurately reflects potential buyers’ mean value pa-

rameter µ . The coefficient is close to the hedonic regression results reported in Table 3. This

is consistent with the observation that the assessment price strongly correlates with the deal price,

which, in turn, captures the bidders’ valuation. Conditional on the assessment price, µ is negatively

affected by the property’s distance to the city center and its construction area. This is reminiscent

of the reduced-form results reported in Table 3. The magnitude of the coefficients is also compa-

rable to the reduced-form results. Again, this could mean that the price assessment overvalues the
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Table 4: Parameter Estimates.

constant log
(

assess.
price

)
log(dist.) area (100 m2) ω mean

Panel A: Recurring auction model results
µ ∼ T RN -0.198 0.994 -0.040 -0.036 0.162 4.330
(Xβµ ,ωµ ,1,7) (0.018) (0.004) (0.002) (0.007) (0.003)
σ ∼ T RN 0.249 -0.028 0.023 0.031 0.100 0.192
(Xβσ ,ωσ ,0.01,3) (0.019) (0.004) (0.002) (0.007) (0.003)
K ∼ T RN -2.971 0.634 -0.260 0.301 0.479 0.509
(XβK ,ωK ,0,15) (0.131) (0.027) (0.018) (0.048) (0.014)

Panel B: Single-round auction model results
µ ∼ T RN -0.294 1.012 -0.057 -0.080 0.209 4.212
(Xβµ ,ωµ ,1,7) (0.019) (0.004) (0.003) (0.008) (0.003)
σ ∼ T RN 0.190 -0.018 0.020 0.037 0.083 0.180
(Xβσ ,ωσ ,0.01,3) (0.014) (0.003) (0.003) (0.007) (0.002)
K ∼ T RN -2.370 0.567 -0.301 0.212 0.560 0.607
(XβK ,ωK ,0,15) (0.139) (0.029) (0.024) (0.050) (0.016)

Notes: (1) Potential buyers’ valuation is assumed to follow a truncated lognormal distribution:
v ∼ T RLN(µ ,σ ,10−4,1200). (2) Standard errors in parentheses are obtained through 200 times
bootstrapping. (3) The rightmost column shows the mean of Λ = {µ ,σ ,K} obtained through
simulation. (4) All coefficients are significant at the p < 0.01 level.

construction area and undervalues the distance to the city center.

The estimation results for σ suggest that there is greater variation in potential buyers’ private

valuations for properties located in the suburbs and those with larger construction areas. However,

there is more consensus among potential buyers regarding the value of properties with higher

assessment prices.

The mean values of µ and σ in our sample are 4.330 and 0.192, respectively. The correspond-

ing value distribution T RLN(4.330,0.192,10−4,1200) has a mean of 77.4, which implies that the

mean of the private value distribution is 774 thousand CNY (114 thousand USD).

Our estimation indicates that entry costs are higher for properties with higher assessed values,

larger construction areas, and shorter distances to the city center. As discussed in Section 4.1, the

requirement to deposit 10% to 20% of the assessed value and to pay the full amount within five

working days of winning poses a financial challenge for potential buyers, who must make costly

efforts to tackle the liquidity constraint. For properties with higher assessed values, the liquidity
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constraint binds more tightly. Additionally, the cost of borrowing may not be linear, as the marginal

cost of borrowing may increase with the amount borrowed. The mean entry cost in our sample is

5,090 CNY (748 USD).

Panel B reports the estimation results of a single-round auction model, revealing the extent of

bias when the recurring structure is ignored in auction estimation. The main difference between

estimating the recurring auction model and the single-round auction model is that the former is

based on observations at the property level, whereas the latter is estimated at the auction level.

As a result, the single-round auction model misses information on the linkage between auction

rounds. Since the single-round auction model does not incorporate the sorted entry pattern across

auction rounds, it is “unaware” of the downward updates in the upper bound of potential buyers’

value distribution. By treating the subsequent auction rounds in the same way as the initial round,

the single-round auction model may well underestimate potential buyers’ values and overestimate

entry costs. As panel B shows, the mean of µ is notably lower, and the mean of K is higher than

the estimation results for a recurring auction model. In this case, the mean value for a property

becomes 686 thousand CNY (101 thousand USD), which is underestimated by 11.4%. The mean

entry cost is 6,070 CNY (867 USD), representing a 16.1% overestimation.

7 Counterfactuals

We conduct two counterfactual exercises based on the structural estimation results. First, to quan-

tify the efficiency and revenue gains associated with recurring auctions, we reduce the number of

possible auction rounds and examine the outcomes of single-round auctions and 2-period recurring

auctions. We keep the reserve prices unchanged for this exercise. Specifically, the reserve prices in

the single-round auctions are the observed first-period reserve prices, and the reserve prices in the

2-period recurring auctions are the observed first- and second-period reserve prices. The results

are presented in Panel A of Table 5. The rightmost column reports the efficiency and revenue of

the observed 3-period recurring auctions. Compared to single-round auctions, 3-period recurring

auctions increase the efficiency and revenue by 16.6% and 15.9%, respectively. This translates

to an efficiency gain of 1.46 billion CNY (0.21 billion USD) and a revenue gain of 1.28 billion

CNY (0.19 billion USD) from 2017 to 2019 in Fujian province alone. Extrapolating to the entire
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country, the annual efficiency and revenue gains amount to 23.13 and 20.19 billion CNY (3.40 and

2.97 billion USD), respectively.31

Table 5: Counterfactual Analyses.

Single-Round (T = 1) Recurring (T = 2) Recurring (T = 3)

Panel A: current reserve price
Mean efficiency (10K CNY) 114.28 132.48 133.26
Mean revenue (10K CNY) 104.06 119.98 120.62

Panel B: optimal reserve price
Mean efficiency (10K CNY) 136.88 137.68 137.72
Mean revenue (10K CNY) 123.49 124.27 124.31

Notes: (1) We report the mean revenue and efficiency for the sample of 7,772 houses. (2) “Single-
Round (T=1)” refers to single-round auctions; “Recurring (T=2)” refers to two-period recurring
auctions; “Recurring (T=3)” refers to three-period recurring auctions. (3) For Panel A, we use the
current reserve prices, i.e., the reserve prices used in the estimation of the three-period recurring
auctions. A single-round auction is a three-period recurring auction with the last two periods
removed. A two-period recurring auction is a three-period recurring auction with the last period
removed. For Panel B, we use the optimal reserve prices for efficiency and revenue, respectively,
in each of the three cases where T = 1, T = 2, and T = 3.

It is worth pointing out that most of the efficiency and revenue gain from using recurring

auctions is realized when there are two possible rounds, i.e., T = 2. Adding an additional auction

round beyond the second improves the auction outcome to a lesser degree. Interestingly, prior to

2017, foreclosed homes were auctioned up to four times in a row. Our findings provide justification

for the policy change that reduced the number of auction rounds by one.

Second, we explore optimal auction design in practice by applying the pricing rules in Theo-

rem 3 and Theorem 4. The results are presented in Panel B of Table 5. Figure 6 visualizes the

reserve prices in 3-period recurring auctions to maximize efficiency or revenue for the properties

in our sample. The box plots of the observed reserve prices are also presented. The figure indicates

that the observed reserve prices in the first two periods are fairly close to optimal for either effi-

ciency or revenue maximization. However, the observed reserve prices in the final period are too

high, causing excessive auction failures and leaving room for improvements. In fact, the optimal

31Note that home foreclosure auctions in Fujian province represent approximately 2.4% of the total market in China,
and the home foreclosure auctions in 2019 account for 38% of the sample. To calculate the annual gain at the country
level, we multiply the annual gain in Fujian from 2017 to 2019 by 38% and then divide the result by 2.4%.
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reserve price sequences can raise efficiency by 3.35% and revenue by 3.06% over actual outcomes.

On a national scale, these improvements translate to an efficiency gain of 5.43 billion CNY (0.80

billion USD) and a revenue gain of 4.50 billion CNY (0.66 billion USD).

Figure 6: Efficiency-Maximizing, Revenue-Maximizing, and Observed Reserve Prices (as Frac-
tions of Assessment Price) in 3-Period Recurring Auctions.

Recurring auctions continue to outperform single-round auctions in both revenue and efficiency

with optimal reserve prices (respectively for both kinds of auctions). While the relative gain is

modest, sellers may still benefit from holding recurring auctions for practical reasons. For example,

the optimal single-round auctions require relatively low reserve prices, but in the home foreclosure

market, the reserve price in the initial auction must be set above 70% of the assessment price, as

mandated by law. To put it into perspective, in single-round auctions, the efficiency-maximizing

reserve price is 0 and the average revenue-maximizing reserve price is 240 thousand CNY, both

of which are nowhere close to the law-required amount, 1.005 million CNY. This is less of an

issue for recurring auctions, wherein the mean efficiency-maximizing reserve price sequence is

(1.057,0.964,0) in million CNY, and the mean revenue-maximizing reserve price sequence is

(1.074,0.989,0.362) in million CNY.
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8 Conclusion

This paper studies recurring auctions where an item can be auctioned again if a previous attempt

fails. These auctions are common in practice, especially for durable goods, such as artworks,

homes, land, and used trucks. In contrast to their prevalence in practice, the literature has paid

little attention to these auctions. The current paper represents an effort to fill in this gap. We

investigate the theoretical properties of recurring auctions, and propose an empirical framework to

estimate the model parameters. We apply our empirical framework in China’s home foreclosure

auction market. The data align well with our model: The auction failure rate is considerable, and

the government will hold follow-up auctions if a previous auction fails.

Our theoretical analysis shows that a recurring auction with an appropriately chosen reserve

price sequence can generate greater expected total surplus than any single-round auction. This is

because potential buyers sort their entry over time, and participation in later rounds is contingent

on no entry in previous rounds. Sorting brings about two benefits to the expected total surplus.

First, sorting allows potential buyers to economize on their entry, as weak potential buyers can

wait and enter until the market is less competitive. Second, weak potential buyers are encouraged

to enter if nobody has entered in previous rounds, which reduces the auction failure rate. Similarly,

recurring auctions can always raise the seller’s expected profit compared to single-round auctions.

In the literature, dynamic mechanism design problems are considered when the fundamentals

(supply, demand, and information) change over time (Bergemann and Välimäki, 2019). However,

we show that in the presence of costly entry, even absent fundamental changes over time, a dynamic

mechanism may improve total surplus and seller’s profit as it allows more efficient sorted entry.

It remains an interesting open question of how to design an efficiency- or revenue-maximizing

dynamic mechanism when participating in the mechanism is costly.

In light of the prevalence of recurring auctions in practice, we take our theoretical results to

a highly relevant real-world setting. Our structural results shed light on the estimation biases

that arise when the dynamics are ignored in auctions for durable goods: potential buyers’ mean

valuation will be considerably underestimated, and entry costs overestimated.

In line with our theoretical results, our empirical analysis suggests that recurring auctions lead

to a large efficiency and revenue gain in China’s home foreclosure market. Compared to single-

33



round auctions with the same (first-period) reserve price, recurring auctions raise efficiency by

16.60% and revenue by 15.92%. Using the optimal reserve price sequences derived from our

model can further improve efficiency by 3.35% and revenue by 3.06%, respectively.
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A Proofs

Proof of Proposition 1. The necessity of the equilibrium conditions stated in Proposition 1 is

obvious. The sufficiency part requires that no deviation is profitable given that v∗ satisfies the

stated conditions. We show the proof for the case where v∗t−1 > v∗t for all 1 ≤ t ≤ T . Proof for the

case where some periods are skipped is similar and thus omitted.

It suffices to show that at any given time t, a potential buyer finds it optimal to enter if and

only if vn ≥ v∗t . Note that at time t, if a potential buyer with value v enters, his expected pay-

off is Πt(v;v∗)/G(v∗t−1); if he chooses to delay and enter at time t + 1, his expected payoff is

Πt+1(v;v∗)/G(v∗t−1). Simple algebra yields that

d[Πt(v;v∗)−Πt+1(v;v∗)]

dv
= δ

t−1{G[max(v,v∗t−1)]−δG[max(v,v∗t )]}> 0. (A1)

Equation (A1) together with the fact that Πt(v∗t ;v∗) = Πt+1(v∗t ;v∗) imply that

Πt(v;v∗) ⋛ Πt+1(v;v∗) ⇐⇒ v ⋛ v∗t .

Therefore, if v < v∗t , the potential buyer will choose to delay. If v > v∗t , the above analysis can be

applied iteratively to show that Πt(v;v∗) > Πt+1(v;v∗) > .. .Πt+τ(v;v∗) for any T − t ≥ τ ≥ 1.

As a result, the potential buyer will choose to enter at time t. This completes the proof.

Proof of Theorem 1. First, it is useful to note the following result.

Lemma 1 (Samuelson, 1985) In a single-round auction, a reserve price equal to the seller’s val-

uation maximizes efficiency.

Proof of Lemma 1. Samuelson (1985) provides a proof in the context of procurement auctions.

For completeness, a proof for forward auctions is provided here.

For any reserve price r ≥ 0, in equilibrium, the entry threshold in value v∗ satisfies the following

indifference condition: (v∗− r)[F(v∗)]N−1 = K. That is, potential buyers with values above v∗

participate in the auction, while those with values below v∗ do not. It is useful to note that at

r = vs, the threshold, denoted by v∗∗, satisfies

(v∗∗− vs)[F(v∗∗)]N−1 = K. (A2)
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For any given threshold v∗, the expected total surplus is

T S(v∗) =
∫ v

v∗
(x− vs)d[F(x)]N −N[1−F(v∗)]K + vs.

Note that

∂T S(v∗)
∂v∗

= N f (v∗)
{

K − (v∗− vs)[F(v∗)]N−1}⋛ 0 ⇐⇒ v∗∗ ⋛ v∗.

Therefore, T S(v∗) is maximized at v∗ = v∗∗. Since r = vs induces the threshold v∗∗, it maximizes

efficiency.

By Lemma 1, in a single-round auction, efficiency is maximized at the reserve price r = vs. In

this case, the entry threshold in value v∗∗ is given by (A2). The expected total surplus is T S(v∗∗) =∫ v
v∗∗(x− vs)d[F(x)]N −N[1−F(v∗∗)]K + vs.

Consider a two-period recurring auction. If r1 = vs and r2 = v∗∗−K,32 then the entry threshold

in period 1 is exactly v∗∗ and no one enters in the second period. That is, v∗1 = v∗2 = v∗∗. Therefore,

the equilibrium outcome coincides with that in the single-round auction with r = vs. To complete

the proof, it suffices to show that lowering r2 improves efficiency.

Note that the expected total surplus in the two-period auction is

T S(v∗1,v∗2) =
∫ v

v∗1
(x− vs)d[F(x)]N + δ

∫ v∗1

v∗2
(x− vs)d[F(x)]N

−N
{
[1−F(v∗1)]K + δ [F(v∗1)−F(v∗2)][F(v

∗
1)]

N−1K
}
+ vs.

Simple algebra shows that33

∂T S(v∗1,v∗2)
∂v∗1

∣∣∣∣
v∗1=v∗2=v∗∗

= δ (v∗∗− vs −K)
∂ [F(v∗∗)]N

∂v∗∗
, and

∂T S(v∗1,v∗2)
∂v∗2

∣∣∣∣
v∗1=v∗2=v∗∗

= −δ (v∗∗− vs −K)
∂ [F(v∗∗)]N

∂v∗∗
.

32It is useful to note that by (A2), v∗∗−K > vs.

33It is useful to note that
∂

{∫ v
v∗1
(x−vs)d[F(x)]N−N[1−F(v∗1)]K

}
∂v∗1

∣∣∣∣∣∣
v∗1=v∗∗

=
∂T S(v∗1)

∂v∗1

∣∣∣
v∗1=v∗∗

= 0, where the second equality

follows from the proof of Lemma 1.
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Therefore, after a marginal decrease in r2, the change in T S(v∗1,v∗2) is

δ (v∗∗− vs −K)
∂ [F(v∗∗)]N

∂v∗∗
∂ (v∗1 − v∗2)

∂ r2
.34

In fact, given r1 = 0, a decrease in r2 from v∗∗ −K must increase (v∗1 − v∗2). Otherwise, if

(v∗1 −v∗2) were not increased, no one would enter in the second period. Then the entry threshold in

period 1 stays at v∗∗, and a potential buyer with value v∗∗ gets a payoff of 0. But for the potential

buyer, deviating to the second period generates a positive payoff of δ [F(v∗∗)]N [v∗∗− (r2−∆r2)−

K] = δ [F(v∗∗)]N∆r2. A contradiction.

Since ∂ (v∗1−v∗2)
∂ r2

< 0 and δ (v∗∗− vs −K) ∂ [F(v∗∗)]N

∂v∗∗ > 0, the change in T S(v∗1,v∗2) is positive after

a decrease in r2. This completes the proof.

Proof of Theorem 2. In Section 3.3, we derive the seller’s expected profit as a function of v∗, (7).

In the T = 1 case, simple algebra yields that

dR(v∗1;r1(v∗1))
dv∗1

=
d[F(v∗1)]

N

dv∗1

{[
1

F(v∗1)

]N−1

K −
[

v∗1 −
1−F(v∗1)

f (v∗1)
− vs

]}
. (A3)

Since v∗1 = v or v∗1 = v does not maximize R(v∗1;r1(v∗1)), (A3) must equal 0 in the optimum. We

denote the maximizer by v∗∗.

Consider a two-period recurring auction, with v∗ = (v∗∗,v∗∗). Clearly, this recurring auction

generates the same expected profit for the seller as the optimal single-round auction. However, by

taking derivative of (7) with respect to v∗1, we have that

dR(v∗;r1(v∗))

dv∗1

∣∣∣∣
v∗1=v∗2=v∗∗

= δK
d[F(v∗∗)]N

dv∗∗

{[
1

F(v∗∗)

]N−1

−1

}
> 0.

As a result, the seller’s expected profit can be improved by raising v∗1 in the recurring auction.

Proof of Theorem 3. We prove the theorem in two steps. First, we show that a solution to (5)

exists. Second, we establish that (6) is the necessary condition for the optimum and has at most

one solution. As a result, the solution to (6) must exist and be optimal.

Step 1: Existence. It is useful to note that to maximize efficiency, it is never optimal to have

types below vs −K enter into the auction. So it is without loss to impose the constraint vT ≥

34To be precise, the expression ∂ (v∗1−v∗2)
∂ r2

denotes the left derivative of (v∗1 − v∗2) with respect to r2. That is, we
consider a marginal decrease in r2.
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min{vs +K,v}. This constraint and the constraints of (5) form a compact set. Since T S(v∗) is

continuous in v∗, the compactness of the feasible set guarantees the existence of a solution.

Moreover, the constraint vT ≥ min{vs −K,v} never binds. That is, vT > min{vs −K,v} in the

optimum. Suppose to the contrary that v∗T = min{vs +K,v} in the optimum. It is without loss to

assume that v∗T−1 > min{vs +K,v}, because, otherwise, if v∗T−1 = v∗T = min{vs +K,v}, we can

think of T − 1 as the last period. For a given v∗T−1 > min{vs +K,v}, choosing the last-period

entry threshold is like a single-round problem considered in Lemma 1. From (A2), it follows that

the efficiency-maximizing entry threshold should be strictly greater than min{vs +K,v}, which

contradicts with v∗T = min{vs +K,v} being optimal.

Step 2: The Necessary Condition. First, we show that the constraint v∗t−1 ≥ v∗t does not bind in

the optimum. To see that, consider the entry threshold sequence v∗ and assume that v∗t0 = v∗t0+1 for

some period t0. It suffices to show that v∗ is never optimal. If v∗t0 = v∗t0+1 ≤ min{vs +K,v}, then

it follows from Step 1 that v∗ cannot be optimal. So we focus on the v∗t0 = v∗t0+1 > min{vs +K,v}

case. If v∗t0 = v∗t0+1 = v∗T , it is like using a single-round auction at time t0. It follows from Theorem 1

that efficiency can be improved for the subgame starting from t0, so v∗ is not optimal. If v∗t0 =

v∗t0+1 > v∗T , consider an alternative entry threshold sequence, in which all the entry thresholds after

time t0 are moved to one period earlier—i.e., v∗′ = (v∗1, . . . ,v∗t0 ,v∗t0+2, . . . ,v∗T ,v∗T ). v∗′ improves over

v∗ since the efficiency gain after time t0 is realized one period earlier.

Since the constraint v∗t−1 ≥ v∗t does not bind, the necessary condition is given by the first-order

condition of the unconstrained maximization problem. Simple algebra would verify that the first

order condition (with respect to v∗t ) is equivalent to (6).

Proof of Theorem 4. The proof of Theorem 4 is omitted since it closely follows that of Theorem 3.

B Details in Empirical Analysis

B.1 Likelihood Function

Four scenarios emerge as the outcomes of recurring auctions. The likelihood function for each

scenario can be calculated as follows.
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Scenario 1: No one enters for three consecutive auctions. This implies that nobody’s valuation

is higher than the entry threshold in the last auction (v∗3), so the likelihood is:

L1 = [F(v∗3)]
N .

Scenario 2: Only one potential buyer enters and wins at the reserve price. This implies that

there is only one potential buyer whose private value is above the entry threshold. The probability

for that event is:

L2 =

(
N
1

)
[F(v∗t−1)−F(v∗t )]F(v

∗
t )

N−1.

Scenario 3: There are multiple entrants, and the deal price is higher than the reserve price.

We calculate the likelihood as the unconditional probability of Ne entrants, multiplied by the con-

ditional density of the second highest value being the deal price:

L3 =

(
N
Ne

)
Ne(Ne −1)[F(v∗t )]

N−Ne f ( p̂)[F( p̂)−F(v∗t )]
Ne−2[F(v∗t−1)−F( p̂)],

where p̂ is the observed winning bid.

Scenario 4: Zero probability events given the equilibrium, such as the winning bid being lower

than the predicted entry threshold. The likelihood is 0 for these events. However, this does not

imply that the simulated likelihood is 0, since this is only for one particular simulation. If, in

all simulations for property i, there is at least one simulation draw of where the outcome can be

rationalized, the simulated likelihood 1
S ∑s Lsi would be positive.

B.2 Alternative Definitions of Potential Buyers

We examine the robustness of our results to alternative definitions of potential buyers. In the

baseline setting, we compute the number of potential buyers as the number of individuals who

have shown interest online, divided by 1000, plus the number of actual entrants. In this section,

we change the factor from 1/1000 to 1/500 and 1/1500 and reestimate the recurring auction model.

The estimation results reported in Table B1 suggest that our results are robust to these variations.

41



Table B1: Estimation Results for Alternative Definitions of Potential Buyers.

constant log
(

assess.
price

)
log(dist.) area (100 m2) ω mean

Panel A: Factor=1/500
µ ∼ T RN -0.288 1.002 -0.048 -0.038 0.167 4.268
(Xβµ ,ωµ ,1,7) (0.022) (0.005) (0.003) (0.010) (0.003)
σ ∼ T RN 0.250 -0.023 0.021 0.018 0.096 0.196
(Xβσ ,ωσ ,0.01,3) (0.020) (0.004) (0.002) (0.008) (0.003)
K ∼ T RN -2.876 0.605 -0.251 0.337 0.480 0.513
(XβK ,ωK ,0,15) (0.154) (0.031) (0.020) (0.045) (0.003)

Panel B: Factor=1/1500
µ ∼ T RN -0.158 0.989 -0.035 -0.029 0.157 4.364
(Xβµ ,ωµ ,1,7) (0.015) (0.003) (0.002) (0.007) (0.003)
σ ∼ T RN 0.257 -0.032 0.022 0.035 0.104 0.188
(Xβσ ,ωσ ,0.01,3) (0.018) (0.004) (0.002) (0.008) (0.004)
K ∼ T RN -3.011 0.642 -0.249 0.304 0.478 0.514
(XβK ,ωK ,0,15) (0.132) (0.027) (0.018) (0.039) (0.013)

Notes: (1) We use the same data and the same parametrization for Panel A and Panel B. The only
difference lies in the definition of potential buyers. (2) Potential buyers’ valuation is assumed to
follow a truncated lognormal distribution: v ∼ T RLN(µ ,σ ,10−4,1200). (3) Standard errors in
parentheses are obtained through 200 times bootstrapping. (4) The rightmost column shows the
mean of Λ = {µ ,σ ,K}.

B.3 Estimation Results by Year

In this section, we divide our sample into two groups: houses auctioned in 2017 and houses auc-

tioned in 2018 and 2019. The estimation results reported in table B2 suggest that coefficient

estimates are similar across the two groups.

B.4 Balance Test for Attrited Houses

A balance test is performed to determine if the observable characteristics of the attrited houses

differ significantly from those of the other houses. As Table B3 shows, there are no significant

differences in any of the observed variables we analyze between the attrited houses and the others.
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Table B2: Estimation Results by Year.

constant log
(

assess.
price

)
log(dist.) area (100 m2) ω mean

Panel A: Year=2017
µ ∼ T RN -0.318 1.033 -0.025 -0.052 0.159 4.336
(Xβµ ,ωµ ,1,7) (0.028) (0.007) (0.004) (0.014) (0.005)
σ ∼ T RN 0.246 -0.025 0.033 0.014 0.099 0.191
(Xβσ ,ωσ ,0.01,3) (0.032) (0.007) (0.004) (0.014) (0.006)
K ∼ T RN -3.476 0.719 -0.374 0.398 0.495 0.506
(XβK ,ωK ,0,15) (0.142) (0.033) (0.036) (0.064) (0.022)

Panel B: Year=2018 or 2019
µ ∼ T RN -0.175 0.987 -0.044 -0.039 0.157 4.329
(Xβµ ,ωµ ,1,7) (0.019) (0.004) (0.003) (0.008) (0.003)
σ ∼ T RN 0.257 -0.031 0.020 0.038 0.099 0.192
(Xβσ ,ωσ ,0.01,3) (0.018) (0.004) (0.003) (0.009) (0.003)
K ∼ T RN -2.890 0.618 -0.235 0.294 0.477 0.514
(XβK ,ωK ,0,15) (0.164) (0.034) (0.021) (0.058) (0.016)

Notes: (1) #Obs.=2,303 in Panel A; #Obs.=5,469 in Panel B. (2) Potential buyers’ valuation is as-
sumed to follow a truncated lognormal distribution: v ∼ T RLN(µ ,σ ,10−4,1200). (3) Standard
errors in parentheses are obtained through 200 times bootstrapping. (4) The rightmost column
shows the mean of Λ = {µ ,σ ,K}.

Table B3: Balance Test for Attrited Houses.

log(reserve) log(assess. price) area (100 m2) log(dist.)

attrition=1 0.010 -0.002 -0.013 0.001
(0.062) (0.060) (0.035) (0.095)

Year-by-month fixed effects X X X X
Observations 3891 3891 3891 3891
R-squared 0.056 0.050 0.031 0.041

Notes: (1) Standard errors in parentheses. (2) We remove the houses sold in the first period
from the balance test since no attrition can happen in the first period.
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