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Abstract

Many innovative startups are joint ventures between researchers and entrepreneurs, com-

bining research and development (R&D) with commercialization in the product market. Gov-

ernment policies, such as grants, subsidies, and patent license fees, are Pigouvian subsidies

that incentivize R&D activities by narrowing the gap between social and private returns on

innovation. However, R&D subsidies may strengthen the researcher’s bargaining power in the

researcher–entrepreneur relationship, leading to lower research effort and unbalanced equity al-

location, which can jeopardize startup performance. Our findings suggest that a policy portfolio

is needed to address both external market failure and internal researcher–entrepreneur friction.

Conventional Pigouvian subsidies to innovation must be supplemented with policies on startup

governance and the entrepreneur labor market.
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1 Introduction

Innovative startups are increasingly important in driving economic development. Studies have

shown that investment in innovative startups results in more patents and radical innovations than

the same expenditure on traditional corporate research and development (R&D) (Kortum and

Lerner, 2000; Acs and Audretsch, 1988). The social returns of innovation in the form of new knowl-

edge and technology spillovers often exceed private returns (Mansfield et al., 1977; Jaffe, 1986;

Griliches, 1992; Jones and Williams, 1998; Bloom et al., 2013), so innovation is under-provided in

laissez-faire (Arrow, 1972). To address this market failure, governments have established various

innovation policies, such as patent systems, research grants, startup subsidies, and venture invest-

ments with public funding, to incentivize R&D activities and entrepreneurship.1 License fees from

the intellectual property (IP) market and subsidies from various programs compensate researchers

for their efforts in discovering new knowledge and developing innovative technologies.

In the modern knowledge-based economy, there is growing interest in exploring the practical

and commercial implications of research output from researchers, particularly university professors.

Across the globe, universities have gradually become the center of national innovation systems (Nel-

son, 1993; Etzkowitz, 2004). The emergence of incubators and industrial conurbations surrounding

universities has become a hallmark of innovation and entrepreneurial hubs, as seen in the biotech-

nology industry around Route 128 and the semiconductor industry in Silicon Valley (Bania et al.,

1993; Zucker et al., 1998).

Governments and universities launch numerous programs to provide financial and other support

to universities for the purpose of cultivating university spinoffs. Once a professor develops IPs with

commercial value, the university knowledge transfer office or entrepreneurship center will provide

assistance in filing patents and establishing startups. The professor usually will not serve as the

CEO of the startup but will instead hire a professional entrepreneur with business expertise to

run the startup. Hence, most innovative startups are joint ventures between a researcher and an

entrepreneur, combining R&D and commercialization in the product market.

In an innovative startup, the researcher usually holds a dominant position and controls the

contract terms offered to the entrepreneur.2 The asymmetric bargaining power between researchers

and entrepreneur lies in the nature of their roles in the startups. The researcher is often the IP

holder and the designated recipient of grants, subsidies, and support from the university. The

researcher’s input to the startup is usually the most scarce and defining resource, while talents with

business expertise are relatively easy to hire from the labor market.

Furthermore, the number of researchers in a particular field is sticky in the short run, while

entrepreneurs can more easily switch fields according to external market conditions. On the one

1Popular examples include the Small Business Investment Company of the United States (Howell, 2017), the
European Investment Fund (Munari and Toschi, 2021), and the Labour Sponsored Venture Capital Corporation of
Canada (Cumming and MacIntosh, 2006).

2Researchers holding stronger bargaining power is common in Silicon Valley. See www.businessinsider.com/

pitching-silicon-valley-investors-research-funding-science-vibe-data-2022-9.
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hand, when the market related to a research area is booming, many entrepreneurs compete for

researchers as partners.3 On the other hand, when the research area experiences a downturn, the

poor performance of a startup affects entrepreneurs more than researchers. Researchers can main-

tain their recognition as scholars and earn income from academic jobs. However, the entrepreneur’s

reputation and income are determined by the startup’s performance. These factors all contribute

to the stronger bargaining power of researchers. Therefore, the main model of this paper assumes

that the researcher has dominant bargaining power and acts as the principal in the contracting

relationship, which reflects features of early-stage innovative startups, especially those founded by

academic entrepreneurs in high-tech sectors (Azoulay et al., 2017).

In this paper, we analyze how innovation subsidies affect the researcher–entrepreneur relation-

ship and startup performance. We construct a model of a joint venture with a researcher (he) and

an entrepreneur (she), who both contribute to the development of a technological innovation that

generates profit from the product market and creates valuable knowledge in the process of R&D.

The researcher is more productive in contributing to the discovery of new knowledge, while the

entrepreneur is more capable of increasing product-market profit using her business expertise. The

researcher and the entrepreneur also differ in their bargaining power in the internal labor market of

the joint venture, with the researcher holding the dominant position and determining the contract

terms of the entrepreneur.

Conventional wisdom holds that the government can incentivize innovation by compensating for

the value of knowledge discovery. This is true if we treat the startup as a joint entity. However, the

internal researcher–entrepreneur relationship affects how different parties respond to the subsidies

strategically. After considering the friction within the startup, we show that full Pigouvian subsidies

cannot restore the first-best outcome and may even exacerbate the effort distortion within the

startup, which can lead to lower startup performance than in laissez-faire.

There are many cases in which innovation support programs amplify internal conflicts between

the researcher and the entrepreneur in high-tech startups. For example, Kno,4 an education technol-

ogy startup, received U.S. Department of Education funds contingent on innovation development.

The government funds triggered a disagreement among the co-founders about their strategies and

IP management. The leading researcher, Osman Rashid, with a dominant position in the startup,

prioritized attracting funds from the government and through technology licensing and placed new

technology development as the main strategy. However, the co-founder, Babur Habib, wanted to

develop new products and features for Kno’s platform. This conflict in strategies jeopardized the

performance of Kno, which was acquired by Intel at a low price in 2013.5 As another example,

Eolas was founded by Michael Doyle, who developed a patent for web browser technology that

3One example is the entrepreneur Elon Musk courting and persuading Tom Mueller, a
highly regarded propulsion engineer, to leave TRW Inc. to co-found SpaceX. See www.

businessinsider.com/elon-musk-spacex-tom-mueller-race-mars-walter-isaacson-biography-2023-

9ManysimilarcaseshaveoccurredinSiliconValleyandotherentrepreneurialhubs.
4See www.wsj.com/articles/BL-DGB-30701.
5See om.co/gigaom/how-much-kno-sold-for-why-it-failed/.
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enabled interactive content. 6 Michael Doyle wanted to focus on licensing the patent to other

companies in the industry, while the co-founder, David Martin, wanted to develop products from

the technology. The conflict between Doyle and Martin arose over the management of the patent

and the direction of the company, which led to internal tension and impacted the performance of

Eolas. Other examples include the bankruptcy of Better Place in 2013,7 A123 Systems in 2012,8

and Solyndra in 2011.9 These vivid examples indicate that innovation policies such as subsidy and

patent licensing may instigate internal conflicts in startups and harm their performance.

Intuitively, innovative startups face two types of distortions: First, under-provision of effort

due to positive externalities of innovation and internal labor market frictions rooted in asymmetric

bargaining power between the researcher and entrepreneur. Most existing compensation schemes

for innovation only address external market failure but ignore the internal organization of startup

teams. This is similar to Barnett (1980) and Boyer and Laffont (1999), who notes that the Pigouvian

tax alone cannot fix the problem of negative externalities in the presence of monopoly market power.

How can policymakers fix both internal and external distortions? We show that policymakers

can design an optimal innovation policy portfolio that includes the entrepreneur’s outside-option

value as an additional policy tool. In practice, researchers often have higher outside-option values

than entrepreneurs, as they can maintain their recognition as scholars and earn income from aca-

demic jobs. However, the entrepreneur usually has worse outside options. Policymakers can estab-

lish a favorable environment for serial entrepreneurs by collaborating with incubators in innovation

and technology hubs to provide additional income sources for entrepreneurs, such as paid coaching

services given by serial entrepreneurs in incubators and entrepreneurial universities. Incubators

and other institutes in technology hubs can also facilitate the mediated search and re-matching of

serial entrepreneurs with researchers to set up new ventures, which encourages dynamism in the

labor market for professional startup managers and serial entrepreneurs.

The paper is organized as follows. Section 2 lists the related literature. Section 3 presents

the main model and the main result of Pigouvian subsidy backfiring. Section 4 discusses how

policymaker can fix the problem and extends the main model. Section 5 concludes the paper and

offers policy implications. All proofs are provided in the Appendix.

2 Related Literature

The core contribution of this paper is to characterize how the internal organization of tech startups

interacts with innovation subsidies and affects startup performance. We contribute to the literature

on incentive issues of innovation and entrepreneurship. This literature consists of two streams. One

6See Eolas Technologies Inc, en.wikipedia.org/wiki/Eolas.
7www.theguardian.com/environment/2013/mar/05/better-place-wrong-electric-car-startup.
8ceramics.org/ceramic-tech-today/about-the-a123-demise-and-bankruptcy-tech-failure-or-business-

failure/.
9www.washingtonpost.com/politics/specialreports/solyndra-scandal/.
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focuses on the positive externality of innovation and entrepreneurship, and the other studies the

contract design of innovative activities given the internal labor market frictions in organizations.

2.1 Public Intervention in Innovation and Entrepreneurship

Public intervention plays an increasingly important role in stimulating innovation and entrepreneur-

ship in the modern knowledge-based economy. Subsidies, tax credits, IP markets, and patent

policies are widely adopted innovation policies. In the literature, there are extensive studies on

the effectiveness of these policy tools (Bloom et al., 2019). For example, Wright (1983) analyzes

the different incentive implications of patents, prizes, and research contracts. He points out that

researchers often have an informational advantage over public administrators, so decentralized re-

search incentives in the form of patents work better than centralized alternatives such as research

prizes and contracts.

Many later studies on public funding of innovation incorporate realistic intervention constraints,

most notably asymmetric information. Some theoretical works consider the funding design problem

in the moral hazard framework, such as Jensen and Thursby (2001) and Lerner and Malmendier

(2010), among others. Hellmann and Thiele (2019) categorizes public funding support into two cat-

egories: subsidizing entrepreneurs of founding ventures or investors’ funding startups and compares

them from the lens of entrepreneurial tacit knowledge accumulation. Entrepreneurs’ tacit knowledge

must be accumulated through past entrepreneurial activities and are necessary for future success

and the development of the entrepreneurial ecosystem. Subsidies for investment funding could en-

courage tolerance of early failures and, thus, the accumulation of entrepreneurial experience. This

long-term impact of funding subsidies outperforms the direct subsidy of founding ventures, which

has only a short-term effect.

Many empirical works find that the effectiveness of innovation subsidies needs to be carefully

evaluated and reviewed. Table 1 summarizes the results of empirical papers evaluating the effect

of innovation policy. Many researchers find that R&D subsidies or enhancing patent protection

have limited or even perverse effects on innovation (Wallsten, 2000; Lach, 2002; Hujer and Radić,

2005; Merito et al., 2007). For example, Denes et al. (2020) demonstrate that subsidizing through

investors in innovative startups is ineffective. Pahnke et al. (2015) show that direct funding has

a negative impact on patenting and no impact on product innovation among early-stage medical

device companies. Stevenson et al. (2021) find that despite a possible positive effect on subsequent

chances in obtaining venture capital investment, public direct funding eventually has a negative

effect on firms’ financial performance because grants may reduce ventures’ ability to effectively use

their resources. Ayoub et al. (2017) also find a negative effect of public direct support on university

spinoffs.

The reasons for the negative effect include misaligned interests of stakeholders of these pro-

grams (Pahnke et al., 2015), corruption and bureaucrats deteriorating program effectiveness (Lerner,

2012), and governments’ multiple goals in designing these programs (Lanahan and Feldman, 2015).
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For example, government support often targets a specific technology area. Directing research

and entrepreneurial investment into the targeted area is possibly a higher priority than individ-

ual startup performance. This priority determines the screening of funded startups, requirements

and funding terms, and the government’s interim and ex post evaluation of startups. These screen-

ing criteria and requirement terms may not be aligned with startup performance, which can result

in a negative effect in empirical studies.

Regarding the effect of patent regulation, Mazzoleni and Nelson (1998a) and Mazzoleni and

Nelson (1998b) survey the concerns about the conducive role of a strong patent system in improving

social welfare. Mansfield (1986), Levin et al. (1987) and Cohen et al. (2000b) show that patents

were not an essential part of firms’ incentives for investing in R&D. Budish et al. (2015) note that

firms’ investment in innovation is not socially optimal under the patent system. Acemoglu and

Akcigit (2012) show that full patent protection is not socially optimal. Igami (2017) shows that

strong patent protection reduces innovation incentives of incumbents and hence could be detrimental

industry-wide.

In addition to the two main public interventions to boost innovation, governments often offer

corporate tax credits for R&D expenditure. The literature on this topic has also progressed over

time, incorporating information asymmetry in the design of the optimal corporate tax (Akcigit and

Liu, 2016; Makris and Pavan, 2021; Akcigit et al., 2022). The empirical examination of corporate

tax incentives also advances. Appelt et al. (2016), Edler et al. (2016), and Moser (2005) analyze

the coordination of tax incentives and other policy tools such as patent regulation. Others empir-

ically evaluate the effectiveness of tax incentives in promoting corporate innovation and call for a

cautious review of the intervention’s effectiveness and its heterogeneity resulting depending on firm

characteristics (Lokshin and Mohnen, 2012; Acemoglu and Akcigit, 2012).

All papers reviewed above do not consider the joint production feature of innovation. We

contribute to this literature by studying how the internal labor market shapes the intervention’s

effectiveness under different policy environments. We provide a novel explanation of why R&D

subsidy programs fail.

2.2 Optimal Innovation Contract

Our paper is also related to studies of internal labor market frictions in the organizational economics

literature. Following Holmstrom (1989), many researchers have studied the optimal contract design

problem of innovators under moral hazard or private information (e.g., Aghion and Bolton 1992;

Aghion and Tirole 1997; Bergemann and Hege 1998; Hörner and Samuelson 2013; Shan 2017). Kerr

et al. (2014) and Kerr and Nanda (2015) survey the literature that applies organizational economics

to innovation and entrepreneurship.

The widely adopted moral hazard framework leads to high-powered incentive design, i.e., pay-

ment contingent on research output proxying for knowledge value. Manso (2011) highlights the

pitfalls of the high-powered incentive design derived from moral hazard. This perverse effect re-

6



ceives empirical support from He and Tian (2013) and Azoulay et al. (2011).

Most of this literature centers on startups contracting with external funders such as venture

capitalists and the innovation incentive for R&D of established firms. Hellmann and Thiele (2015)

is one pioneering work explicitly focusing on contracting within founding teams. Hellmann and

Thiele (2015) embeds the standard team incentive problem in Holmstrom (1982) into a multitask

environment and imposes incompleteness of contracts to examine an endogenous choice between

upfront versus delayed contracting between founders. They show how the stage of founders commit-

ting to each other determines startup ownership, incentives, and performance. Our work abstracts

from the informational and contractual frictions widely examined in this literature to concentrate

on the interaction of bargaining power asymmetry with the Pigouvian subsidy of the innovation

externality and highlight the subsidy’s backfiring effect without any further friction except the

bargaining power asymmetry.

The optimal contract framework under asymmetric information usually abstracts from the ex-

ternality of innovative products. Our work closes the gap of examining the crucial feature of inno-

vation, knowledge externality, in the negligent internal market structure of producing innovation

and its externality. Policies often call for public efforts to collaborate with private markets, such

as the private-public partnership in boosting innovation and entrepreneurship in many technology

hubs worldwide. The growing popularity of private-public partnerships has attracted more schol-

arly attention to this topic. Bai et al. (2021) discuss the role of public policies in entrepreneurship

and the private equity industry. The most closely related paper to ours is Lach et al. (2021). It

studies the incentive design of public funding in innovation and entrepreneurship in the framework

of private information. Gao et al. (2022) show that the optimal investment in innovative startups

depends on the structure of the product market and the amount of resources.

3 Main Model

3.1 Setup

A researcher (he) and an entrepreneur (she) jointly engage in a startup that develops and com-

mercializes an innovative technology, generating both profit from the product market and value

from new knowledge. The researcher is the principal who has more bargaining power in the joint

venture. The entrepreneur is the agent.10

The two players differ in their abilities: the researcher has expertise in conducting research and

contributes more to the value of knowledge, while the entrepreneur is more capable of generating

profit from the product market than knowledge spillovers. Let e denote the research effort exerted

by the principal. Let x denote the business effort by the agent. These two efforts jointly determine

the product market profit and the value of new knowledge. Let π(e, x) denote the product market

profit and g(e, x) denote the value of knowledge. Both the production of profit and value of new

10We analyze the case of the entrepreneur being the principal in Section 4.4.
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knowledge follow the Cobb-Douglas form:

π(e, x) = Aπe
αx(1−α),(1)

g(e, x) = Age
βx(1−β).(2)

We restrict e > 1 and x > 1. Assume that β > α, which reflects that the research effort plays a

more essential role in generating knowledge spillovers than product market profits.

Both the principal and agent incur a constant marginal cost of effort, denoted by ce and cx,

respectively. Their utility functions are increasing and concave over their earnings. For simplicity,

assume that the principal’s utility function is V (·) = ν ln(·) and that of the agent is U(·) = ln(·).
The parameter ν reflects that the principal and agent may have different marginal values of wealth.

The timing of the game is as follows.

1. The principal offers a contract to the agent that specifies the transfer, w, contingent on the

startup’s output π and g.

2. The agent decides whether to accept the contract. If the agent accepts the contract, she

participates in the joint production with the principal. If not, she obtains an outside option

value u = 0.11

3. The principal chooses his effort level e, and the agent chooses her effort level x.

4. The product market profits and knowledge value are realized. The agent obtains the transfer

as specified in the contract.

We assume that the outputs of the joint venture, π and g, are common knowledge. Because

there are one-to-one mappings from the effort combinations to the outputs, there is no information

asymmetry.12 The principal can specify the transfer at each level of income that just compensates

for the agent’s effort costs. The performance-based transfer can also be regarded as the agent’s

bonus, which is common in the financial contracting design literature and reality.13

The contracting relationship in our model can also be regarded as an internal labor market. The

unequal bargaining power in the model captures the difference in market power between suppliers

of two different inputs. The principal can be regarded as a monopsony of his input, whereas the

agent faces more competition on the input she provides. Our setting can also be viewed as a

rent capture behavior by the more powerful side and be applied to other scenarios such as the

relationship between a power investor and a founder. Figure 1 illustrates the model.

11As is common in the contracting literature, assume that under the circumstances with the agent indifferent
between actions, she acts in favor of the principal. We later consider the case of a positive outside option (u > 0) in
Section 4.3.

12This setting allows us to focus on the role of asymmetric bargaining power in the joint venture. We introduce
asymmetric information into the model in Section 4.5.

13In the literature, it is common to assume that the equity share rule depends on the startup’s performance (Kaplan
and Strömberg, 2003). The agent’s equity share is the ratio of the transfer to the startup’s total income.
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Figure 1: Illustration of the Model

3.2 First-best Allocation

Let Y denote the sum of the startup’s profit generated in the product market and the value of

knowledge, Y
.
= π (e, x) + g (e, x). Let w denote the transfer received by the agent. The first-best

allocation maximizes social welfare, i.e., the total payoff of both players:

SW (e, x, w)
.
= V (Y − w)− cee+ U (w)− cxx.

Lemma 1. The first-best allocation, (w∗, e∗, x∗), is characterized by the following first-order condi-

tions (FOCs):

w∗ =
1

ν + 1
Y,(3)

cee
∗

1 + ν
= α+ (β − α)

t

1 + t
,(4)

cxx
∗

1 + ν
= (1− α)− (β − α)

t

1 + t
,(5)

where t∗
.
=

Ag

Aπ

(
e∗

x∗

)(β−α)
.

To avoid triviality, we focus on the scenarios where the agent earns a nonnegative net utility

under the first-best allocation. condition (3) implies that the relative marginal utility determines

how the researcher and the entrepreneur share the startup’s total value. The effort provision

depends on the marginal effort cost and its marginal product represented by the right-hand sides of

(5) and (4). An effort’s marginal product depends on its contribution to the two payoff components

and their relative value. t is the ratio of knowledge value to the product market profit.
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3.3 Equilibrium in laissez-faire

In laissez-faire, there is no IP protection or other subsidies for knowledge. The startup only earns

income from the product market profit, π(e, x) = Aπe
(1−α)xα. The principal offers a contract as a

transfer, w, contingent on the profit. The optimization problem of the principal is

max
{w,e}

{V (π(e, x̂)− w)− cee}(6)

s.t. x̂ = argmax
x
{U(w)− cxx, u}.(7)

The Lagrangian is

L = V (π (e, x)− w)− cee+ λ [U(w)− cxx] .

Let (ŵ0, ê0, x̂0) denote the solution to problem (6), where the subscript“0” indicates that the startup

can appropriate zero income from the value of knowledge.

Lemma 2. The equilibrium in laissez-faire is a unique tuple, (ŵ0, ê0, x̂0), characterized by FOCs:

ŵ0 =
λ̂0

ν + λ̂0

π,(8)

ce

λ̂0 + ν
=

α

ê0
,(9)

λ̂0cx

λ̂0 + ν
=

(1− α)

x̂0
,(10)

ln

(
λ̂0

ν + λ̂0

π

)
= cxx̂0,(11)

where λ̂0 is the Lagrangian multiplier at optimum.

Define the agent’s equity share as the proportion of the agent’s wage to the startup’s total

income. Under laissez-faire, the agent’s equity share and the research effort are below the first-best

levels. The formal statement is as follows:

Lemma 3. In the laissez-faire market equilibrium,

(a) the agent’s equity share is below the first-best level, i.e., ŵ0
π̂0

< w∗

Y ∗ ;

(b) the researcher’s effort is below the first-best level, i.e., ê0 < e∗.

Without informational noise or uncertainty, the principal can perfectly infer the agent’s effort

from the profit. The transfer is determined by the participation constraint (7). The principal only

needs to compensate for the agent’s effort cost given u = 0.14 Hence, the agent earns a zero payoff

14An alternative interpretation is that the labor market of entrepreneurs is perfectly competitive, and the principal
with full bargaining power is the monopsony employer.
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in laissez-faire but has a positive net payoff in the first-best allocation.15 As a result, the laissez-

faire outcome features underprovision of the research effort and the principal obtaining too much

equity share.

3.4 Full Internalization by Pigouvian Subsidy

We now assume that the startup can appropriate the value of knowledge. The compensation can

be in the form of grants, subsidies, or license fees from the IP market. We abstract from the

specific form of policy intervention and consider the Pigouvian subsidy that fully compensates for

the positive externalities of innovation. The startup’s total income is

Y (e, x) = π(e, x) + g(e, x) = Aπe
αx(1−α) +Age

βx(1−β)

The principal’s problem is

max
(w,e)
{V (Y (e, x̂)− w)− cee} ,(12)

s.t. x̂ = argmax
x
{(U(w)− cxx) , u},(13)

The Lagrangian of the problem is

L = V (Y − w)− cee+ λ [U (w)− cxx.]

where λ is the Lagrangian multiplier that represents the shadow value of the agent’s utility from

the perspective of the principal.

Let (ŵ1, ê1, x̂1) denote the equilibrium under full internalization by the Pigouvian subsidy, where

the subscript “1” indicates that the startup can appropriate the full value of knowledge.

Lemma 4. The equilibrium under the full Pigouvian subsidy is a unique tuple (ŵ1, ê1, x̂1) that can

be characterized by the following FOCs:

ŵ1 =
λ̂1

ν + λ̂1

Ŷ1,(14)

ce

λ̂1 + ν
=
{
α+ (β − α)

t̂1

1 + t̂1

} 1

ê1
,(15)

λ̂1cx

λ̂1 + ν
=
{
(1− α)− (β − α)

t̂1

1 + t̂1

} 1

x̂1
,(16)

ln

(
λ̂1

ν + λ̂1

Ŷ1

)
= cxx̂1,(17)

where λ̂1 denotes the Lagrangian multiplier at optimum, and t̂1
.
=

Ag

Aπ

(
ê1
x̂1

)(β−α)
.

15If there is asymmetric information, the agent will earn an information rent.
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Condition (14) indicates that the agent obtains λ̂1

ν+λ̂1
share of the total income of the startup.

We have the following result:

Lemma 5. Under the Pigouvian subsidy, λ̂1 < 1, and the equilibrium equity share of the agent is

below the first-best level, i.e., ŵ1

Ŷ1
< w∗

Y ∗ .

The Lagrangian multiplier (λ̂1) affects the research effort and the business effort via conditions

(15) and (16). The right-hand sides of these two conditions are the marginal benefit of research effort

and of business effort, respectively.16 The left-hand sides of (15) and (16) are the adjusted marginal

cost of the corresponding effort, and the adjustment accounts for the allocation of the equity share.

Because λ̂1 < 1, it is more appealing to employ the business effort rather than the research effort

under the Pigouvian subsidy. In other words, a large equity share held by the researcher increases

his marginal effort cost and induces him to substitute his effort for the entrepreneur’s effort. Here

is the formal result.

Proposition 1. The first-best effort levels cannot be restored by the full Pigouvian subsidy for the

value of knowledge:

(a) the principal’s equilibrium effort provision is below the first-best level, i.e., ê1 < e∗;

(b) the agent’s equilibrium effort provision is above the first-best level, i.e., x̂1 > x∗.

3.5 Pigouvian Subsidy Backfire

Proposition 1 shows that full internalization of the value of knowledge cannot restore the first-

best allocation because the Pigouvian subsidy aggravates the effort distortion problem within the

startup. More importantly, we find that the distortion can lead to an outcome even worse than

that in laissez-faire.

Proposition 2. The Pigouvian subsidy reduces the equilibrium effort of the researcher compared to

laissez-faire, i.e., ê1 < ê0, given that

bg
β
− bπ

α
> ln

(
β

α

)
+

1− β

β
− 1− α

α
,(18)

(β − α)

[
bπ

(1− α)α
− 1

1− α
− 2

ν((1− α) + (1− β))

]
< 1,(19)

where bπ
.
= ln

(
Aπ

(
α
ce

)α (
1−α
cx

)1−α
)

and bg
.
= ln

(
Ag

(
β
ce

)β (
1−β
cx

)1−β
)
.

16The marginal benefit of effort exhibits decreasing marginal returns and complementarity between the two efforts.
These two features are from the assumptions of production functions (1) and (2). The marginal benefit of research
effort increases in the ratio of knowledge value to product profit denoted as t, whereas the marginal benefit of business
decreases in it. Specifically, greater productivity to generate knowledge (Ag) increases the marginal benefit of the
research effort and decreases that of the business effort. The opposite is true for Aπ.
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Proposition 2 presents the striking result that the Pigouvian subsidy can lead to unintended

consequences after considering the researcher–entrepreneur relationship. The purpose of compen-

sating for knowledge spillovers is to encourage the researcher to exert more effort, but the opposite

occurs in equilibrium. Intuitively, the Pigouvian subsidy has a stimulating effect that increases

the demand for research effort because it corrects the ratio of the marginal benefits of two efforts

represented by the right-hand sides of (15) and (16). The social value of knowledge is internalized,

so it demands more research effort. However, the unequal bargaining power within the startup

allows the principal to save his effort and exploit the agent after receiving the subsidy. As a result,

the subsidy also imposes a replacement effect that reduces the research effort and increases the

business effect in equilibrium.

Because the researcher’s effort is more critical, the startup’s performance in R&D and the

product market can both worsen after receiving the Pigouvian subsidy. This result contrasts with

conventional wisdom because it implies that protecting IP or subsidizing innovation can harm the

performance of innovative startups and social welfare.

Corollary 1. Given conditions (18) and (19), social welfare is reduced by the Pigouvian subsidy,

SW (ê1, x̂1, ŵ1) < SW (ê0, x̂0, ŵ0).

This perverse welfare effect occurs under conditions (18) and (19). A necessary condition for

(18) is Ag > Aπ, which means that the startup is more productive in generating valuable knowledge

than profit from the product market. Intuitively, the Pigouvian subsidy generates more value for

a startup with higher productivity of knowledge, so a less effective effort bundle with less research

effort and more business effort can generate a level of knowledge value that satisfies the participation

constraint. In this sense, (18) ensures a sufficiently large replacement effect.

Condition (19) requires that β−α is not too large, and α is close to 1−α. In other words, efforts

from the researcher are both important in generating commercial profits and knowledge (α is not

small, and β−α is small), and the efforts from the researcher and entrepreneur have strong synergy

(α close to 1−α). This is an essential feature of tech startups that develop innovative products and

services. For example, ChatGPT developed by OpenAI is a technological breakthrough and also

lays the foundation for many commercial applications. Inputs from researchers and entrepreneurs

are both essential in contributing to its vast knowledge spillovers and commercial value. If β is

much larger than α, R&D’s contribution to knowledge generation and profit differ a lot, and thus

the effect of the Pigouvian subsidy to stimulate research efforts will be large. To sum up, condition

(18) and condition (19) ensure a large replacement effect substituting e with x and a small direct

effect of stimulating e.

Based on Proposition 2, we have other results.

Corollary 2. When ê1 < ê0, the Pigouvian subsidy decreases the agent’s equity share.

Corollary 2 states that the effort distortion problem also results in the agent obtaining a lower
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equity share of the startup. The replacement effect of the Pigouvian subsidy decreases the necessary

equity share to incentivize the agent at each level of effort. Consequently, the agent works more

but receives less transfer than in the laissez-faire equilibrium.

Corollary 3. If ê1 < ê0 under Ag, then ê1 < ê0 holds for all A
′
g > Ag.

Corollary 3 indicates that the effort distortion by the Pigouvian subsidy is more likely to occur

in industries with higher productivity in knowledge. Many innovation policies focus on high-tech

industries that generate valuable knowledge, but these industries are also more likely to exhibit the

perverse welfare effect after receiving the subsidy.

4 Extension and Discussion

We have shown that the conventional Pigouvian subsidy ignores the internal organization of in-

novative startups and can backfire. How can policymakers correct the effort distortion with the

imbalanced researcher–entrepreneur relationship? We analyze three policy tools in Sections 4.1 to

4.3. Sections 4.4 and 4.5 extend the main model.

4.1 Optimal Rate of Compensation

Suppose that the social planner can choose the proportion of the value of knowledge that the startup

can appropriate. Let µ ∈ [0, 1] denote the rate of compensation. The startup’s income is

Yµ (e, x)
.
= Aπe

αx(1−α) + µAge
βx(1−β).

In the main model, we study the case of full compensation with µ = 1. The social planner chooses

the compensation rate µ to maximize social welfare:

max
µ

{
V

(
ν

ν + 1
Ỹ (ẽµ, x̃µ)

)
+ U

(
1

ν + 1
Ỹ (ẽµ, x̃µ)

)
− ceẽµ − cxx̃µ

}
,(20)

s.t. ẽµ = argmax
eµ

{
V

(
ν

ν + λ̃µ

Ỹ (eµ, x̃µ)

)
− ceeµ

}
,(21)

cxx̃µ = U

(
λ̃µ

ν + λ̃µ

Ỹ (ẽµ, x̃µ)

)
.(22)

The objective function (20) is the net social surplus, where the payoff split between players

is based on the first-best allocation in Lemma 1. Constraint (20) represents the principal’s best

response to the compensation rate µ. The agent’s equity share
(

λ
ν+λ

)
is derived from the FOC of

the principal’s problem similar to (87). Define the solution to (20) as the second-best allocation.

We obtain the following results:
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Proposition 3. The second-best allocation features zero subsidy (µ∗ = 0) given conditions (18), (19),

and

lnAπ + α ln

(
ν

ce

)
+ (1− 2α) ln

(
1− α

cx

)
≤ (1− α) +

(1− α)2

cx
,(23)

1− α

α (β − α)
≤ 2.(24)

Proposition 3 characterizes the conditions under which no subsidy for innovation is best for

society. The subsidy has two effects in opposite directions. It could be welfare-improving as an

additional income source. However, it allows the researcher to utilize his advantageous bargaining

power to substitute his effort with the agent’s effort. If the latter effect is stronger, the subsidy

reduces R&D. The startup is less productive in delivering knowledge and profit. The Pigouvian

subsidy reduces total welfare relative to the laissez-faire equilibrium.

Conditions (18) and (19) indicate that the subsidy reduces equilibrium R&D, and the replace-

ment effect dominates the stimulating effect. The gap between equilibrium R&D and its first-best

level depends on α, which is the contribution of research effort to product market performance. A

larger α implies a greater R&D gap and higher inefficiency.

Condition (23) indicates a large Aπ. The replacement effect induced by the subsidy distorts

the effort more severely in commercial production than in knowledge generation. Given the high

productivity in the product market represented by a large Aπ, the welfare loss in the product

market is large and dominates.

Both conditions (23) and (24) indicate a large α. Hence, the inefficiency of the subsidy is so

strong that even at a very small level, the stimulating effect cannot improve welfare, and hence the

social planner’s optimum is laissez-faire if the power asymmetry within the startup team cannot be

corrected.

Proposition 4. The second-best allocation features partial subsidy (µ∗ ∈ (0, 1)) given the following

conditions:

cx

(
1− (β − α)α

1− α

)
≥ (β − α)α,(25)

ln

(
(1− α)Aπ

(
νcx
ce

)α

+ (1− β)Ag

(
νcx
ce

)β
)
≤cx,(26)

ln

(
Aπ (2ν)

α (1− α)

cαe c
1−2α
x

)
− (1− α) (2− α) ≥α ln

(
(1− α)2

α
+ b2

)
+ αb2,(27)

where b2
.
=

√
1−α
α

(
(1−α)3

α − 4c2x
β−α

)
.17

According to Proposition 4, partial subsidy maximizes social welfare. condition (27) requires

17We assume a regularity for the sufficient condition to hold is (β − α)α < 1− α.
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the subsidy to improve welfare at a small subsidy rate, i.e., the marginal welfare at µ approaching

zero is positive. It holds under small product-market productivity, i.e., small Aπ and low α, which

restrains the size of the replacement effect such that it is below the stimulating effect at a small

level of subsidy.

Note: The parameters for the left-panel are ((1− β), (1− α), Aπ, Ag, cx, ce, ν) = (0.4, 0.6, 20, 5, 1.58, 1, 1.7). The
parameters for the right-panel are ((1− β), (1− α), Aπ, Ag, cx, ce, ν) = (0.4, 0.7, 20

1.3
, 5
1.3

, 1.28
1.2

, 1, 2)

Figure 2: How Subsidy Rate Affects Research Effort, eµ

Conditions (25) and (26) indicate a moderate level of Ag and similar importance of R&D in

generating two incomes. They result in the negative marginal effect of the subsidy on total welfare as

subsidy rate µ approaches one. The negative net effect shows that the replacement effect dominates

the stimulating effect with a large subsidy but is dominated by stimulating at small subsidy. An

intermediate subsidy restricts the principal’s ability to exploit the agent while still enabling the

stimulating effect to play a role, and thus balance two forces and reach social optimum. Figure 2

depicts the equilibrium research effort with respect to the compensation rate. The left and right

panels illustrate Propositions 3 and 4, respectively.

The ultimate impact of startup subsidy on the research effort is the net effect of two forces, the

demand enhancement of e and the relaxed supply of x. The two forces are in opposite directions.

The former force drives e up, as the compensation in the value of knowledge depends more on the

research effort than the business effort. The latter force tends to replace e with x, which is called

the replacement effect. The demand enhancement effect is larger at small levels of subsidy than at

high levels of subsidy due to the decreasing return feature. However, the relaxation of supply for x

is determined by the productivity of knowledge generation (Ag). In the right panel of Figure 2, the

stimulating effect dominates the replacement effect under a small subsidy and improves welfare. As

the subsidy rate increases, the demand enhancement goes below the relaxed supply effect, revealed
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as the net effect of the subsidy on research effort becoming negative, as shown in Proposition 4.

The left panel depicts Proposition 3 when the stimulating effect cannot outweigh the replacement

effect, so the net effect is negative at a very small subsidy. Hence, the laissez-faire equilibrium

coincides with the second best, which is in stark contrast to the conventional wisdom.

Note that, as shown in Figure 2, adjusting the compensation rate of the Pigouvian subsidy

cannot fully solve the problem. The first-best efforts can never be restored with any level of

subsidy.

Proposition 5. There does not exist µ ∈ [0, 1] such that the solution to the problem (20) yields the

first-best effort levels, (e∗, x∗).

4.2 Multidimensional Compensation Scheme

One natural remedy to the dual problem of externalities and internal friction is to make the com-

pensation scheme richer. Specifically, consider a multidimensional compensation scheme that can

target individual players in the startup or specific outputs. An example of multidimensional com-

pensation schemes includes a startup subsidy together with innovation awards and grants given to

individual researchers. Let (µ, τe,π, τe,g, τx,π, τx,g) denote a menu of subsidies for the startup and

individuals. Each element in the vector is a compensation rate. Subscripts “e”and“x” represent the

researcher and the entrepreneur, respectively. Subscripts “π” and “g” represent the product market

profit and the value of knowledge. For example, τx,g denotes the compensation rate received by the

entrepreneur based on the value of knowledge.

Given a compensation scheme (µ, τe,π, τe,g, τx,π, τx,g) and effort levels (e, x), the researcher re-

ceives a total subsidy Te
.
= τe,ππ (e, x)+τe,gg (e, x), and the entrepreneur receives Tx

.
= τx,ππ (e, x)+

τx,gg (e, x). The startup’s profit is Ỹs (e, x)
.
= Aπe

αx(1−α)+µAge
βx(1−β). The social planner’s prob-

lem is

max
(µ,τe,π ,τe,g ,τx,π ,τx,g)

V

(
ν

ν + 1
Ỹ (ẽ, x)

)
− ceẽ+ U

(
1

ν + 1
Ỹ (ẽ, x)

)
− cxx,

s.t. ẽ = argmax
e,w

{
V
(
Ỹs (e, x) + Te − w

)
− cee

}
,(28)

cxx = U (w + Tx) .

We find that the multidimensional subsidy still cannot restore the first-best allocation:

Proposition 6. There does not exist a subsidy scheme (µ, τe,π, τe,g, τx,π, τx,g) ∈ [0, 1]5 that yields an

equilibrium with the first-best effort levels, (e∗, x∗).

This result demonstrates the robustness of our main results. Because all subsidies and incomes

are public information, the principal can write contract terms based on the subsidies. As long as

the principal holds superior bargaining power, he can exploit his power to substitute his efforts
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with the agent’s, and the replacement effect distorts equilibrium from the first-best.18 This result

also indicates that fixing the internal labor market structure is essential to restore the first best.

4.3 Increasing Entrepreneur’s Outside Option Value

The weak position of the entrepreneur in the startup is represented by her low outside option

value. Increasing the entrepreneur’s outside option value can be a potential policy instrument to

intervene in the researcher–entrepreneur relationship within the startup. We now examine the

effect of changing the value of the outside option, u. We find that increasing u mitigates the effort

distortion problem.

Let u∗x = U(e∗, x∗) denote the agent’s utility in the first-best allocation derived in Lemma 1.

With the full Pigouvian subsidy, the principal’s problem is

max
(w,e)
{V (Y (e, x̂)− w)− cee} s.t. x̂ = argmax{(U (w)− cxx) , u}.

Let ê1(u) and x̂1(u) denote the equilibrium efforts of the principal and the agent under the full

subsidy when the agent’s outside option is u. We have the following result:

Proposition 7. Under the full Pigouvian subsidy,

(a) When 0 < u < u∗x, the equilibrium exhibits the following properties: (i) λ̂1(u) < 1; (ii) the

research effort is below the first-best level, i.e., ê1(u) < e∗; (iii) the business effort is above the

first-best level, i.e., x̂1(u) > x∗.

(b) As u increases in [u, u∗x], the equilibrium effort distortion decreases, i.e., ∂(e∗−ê1(u))
∂u < 0 and

∂(x̂1(u)−x∗)
∂u < 0. When u = u∗x, the equilibrium is the first-best allocation.

Proposition 7-(a) shows that the results in Propositions 1 and 2 are robust as long as the agent

has an outside option value below the first-best payoff (0 < u < u∗x). Given u < u∗x, the principal

can still benefit from replacing his own effort with the agent’s relative to the first-best allocation.

Proposition 7-(b) demonstrates that the outside option value is an effective tool to mitigate the

effort distortion problem. As u increases, the power asymmetry in the startup team reduces, i.e.,

viewing the startup as an internal labor market, the market powers of the researcher and the

entrepreneur become close. When the internal labor market friction of the startup is eliminated,

the Pigouvian subsidy can restore the first-best allocation.

4.4 Entrepreneur as Principal

What if the entrepreneur has greater bargaining power and serves as the principal? In this case, the

entrepreneur offers a take-it-or-leave-it contract to the researcher. She can exploit the researcher by

18Note that our analysis assumes away information frictions. In reality, the social planner faces the problem of
asymmetric information, which may further compromise the effectiveness of complex subsidy programs.
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replacing her business effort with the researcher’s effort. The researcher, who mainly contributes to

the value of knowledge, works more but obtains less equity share. In this case, the external funding

compensating for knowledge spillovers may also amplify the internal organizational frictions, which

leads to effort distortion and production inefficiency.

One example is the recent internal conflict at OpenAI.19 Sam Altman, CEO of OpenAI and

an experienced entrepreneur, disagreed dramatically with the chief scientist, Ilya Sutskever, on the

company’s future strategies. The internal conflict led to a restructuring of OpenAI’s board and the

layoff of many staff. This conflict had a significant and possibly prolonged negative impact on the

startup performance and the AI industry with adverse social impact.

The entrepreneur solves the following problem in the laissez-faire market:

max
{w,e}

{V (π (e, x)− w)− cxx} ,

s.t. e = argmax{(U (w(π))− cee) , u}.(29)

Denote the equilibrium effort level as {ě0, x̌0}.
With a full subsidy of the value of knowledge, the entrepreneur’s problem is

max
{w,e}

{V (Y (e, x)− w)− cee} ,

s.t. e = argmax{(U (w(Y ))− cee) , u}.

where Y (e, x) = (e, x) + g(e, x) = Aπe
αx(1−α) + Age

βx(1−β). Denote the equilibrium effort levels

under the Pigouvian subsidy as {ě1, x̌1}.
We compare the equilibrium effort levels in these two cases and find the following result.

Proposition 8. In the scenario with the entrepreneur being the principal,

(a) the researcher’s equilibrium effort is higher after receiving the full subsidy, i.e., ě1 > ě0;

(b) the entrepreneur’s equilibrium effort is lower after receiving the full subsidy, i.e., x̌1 ≤ x̌0, if

Aπ ≥ ce.

(c) the subsidy reduces the agent’s equity shares when ln
(
αAπ
ce

)
≤ α and β(1−α)

α(1−β) ≤
(

Ag

Aπ

) 1
1−β

.

The Pigouvian subsidy still yields the stimulating effect and the replacement effect, but these

two effects are in the same direction when the entrepreneur holds the dominant position. The

stimulating effect encourages the researcher to exert more effort to generate valuable knowledge

and receive compensation, while the replacement effect allows the entrepreneur to replace her effort

with the researcher’s effort. Hence, both effects lead to an increase in the research effort. On the

other hand, these two effects influence business effort in opposite directions. If the research effort’s

19See contxto.com/en/artificial-intelligence/openai-leadership-crisis-the-timeline-analysis/.
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marginal cost is not high, indicated by condition Aπ ≥ ce, the replacement effect dominates the

stimulating effect, and the business effort decreases.20

Proposition 8 shows that the Pigouvian subsidy can distort the effort choices when the en-

trepreneur has the dominant position. The subsidy enables the principal to incentivize a given level

of research effort by relinquishing fewer equity shares. The researcher works more but obtains a

smaller share of the startup, which makes tech startups less attractive to researchers in the long

run.

Corollary 4. If Aπ ≥ ce, ln
(
αAπ
ce

)
≤ α and β(1−α)

α(1−β) ≤
(

Ag

Aπ

) 1
1−β

, social welfare is reduced by the

Pigouvian subsidy, i.e.,

SW (ě1, x̌1, w̌1) < SW (ě0, x̌0, w̌0).

This perverse welfare effect occurs when the replacement effect is large. Intuitively, the Pigou-

vian subsidy generates more value for a startup with higher productivity of knowledge, so a less

effective effort bundle with less research effort and more business effort can generate a level of

knowledge value that satisfies the participation constraint.

The corollary above implies that the essential problem is asymmetric bargaining power. In the

previous section, having the correct level of outside options is the best. If the entrepreneur has

superior bargaining power, there is still efficiency loss.

In summary, this section examines the policy bundles with the Pigouvian subsidy and other

policies improving the entrepreneur’s market power over the researcher within the internal labor

market. In the extreme, with the entrepreneur as the principal, the Pigouvian subsidy can increase

the research effort from the level of the laissez-faire equilibrium. In contrast, the entrepreneur’s

effort may decrease, and the distribution of equity shares becomes more unbalanced. The underpro-

vision of entrepreneurial effort and the overprovision of research effort lead to distortion in resource

utilization and reduced marginal product under the Pigouvian subsidy relative to the laissez-faire

equilibrium.

4.5 Information Friction

Our main model assumes complete and symmetric information to focus on how the startup’s internal

organization jeopardizes the good intention of the Pigouvian subsidy. In this section, we consider an

extension of the main model with hidden action, which is commonly studied in the entrepreneurial

finance literature. Because the agent’s effort is usually not contractible, most entrepreneurial finance

contracts are based on coarse signals of startup performance called milestones, such as patent

approval, development of the product prototype, and having the first corporate clients.

For tech startups, achieving these milestones requires input from both the researcher and the

entrepreneur. Following the main model, let e denote the research effort and x denote the business

20The condition Aπ ≥ ce is not strong considering that Aπ should be large to ensure that income is positive,i.e.,
ln(Aπr

α) > 0.
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effort. However, they are not contractible. For simplicity, we assume that the cost function of the

researcher takes the quadratic form cee2

2 to ensure that the net utility of the principal is concave.

We keep the cost function of business effort as cxx.

We consider two scenarios. First, in laissez-faire, the startup only earns income from the product

market. Suppose that the commercialization milestone has a binary outcome of success (s) or failure

(f). This outcome is commonly observable and verifiable. The researcher and entrepreneur jointly

determine the probability of success:

p(e, x) = Ape
ρx(1−ρ).

Here, Ap represents the efficiency of the startup team and ensures that the probabilities are below

one. Achieving the commercialization milestone yields a profit πs to the startup; otherwise, the

startup obtains πf < πs.

Second, from a social welfare perspective, the startup generates value from both the product

market and innovation. Suppose that the startup now faces a milestone that combines the goals of

commercialization and knowledge discovery. The outcome is either success (s) or failure (f), and

the success rate is

q(e, x) = Aqe
σx(1−σ),

where Aq is an efficiency parameter similar to Ap. Successfully achieving the milestone generates

a social value Ys, and failure leads to a social value Yf < Ys. Because the social value milestone

includes innovation and knowledge discovery, it depends more on the research effort than the

commercialization milestone, we assume σ > ρ.

In the main model, the principal can infer the agent’s effort from observing the startup per-

formance, which is a one-to-one mapping of both players’ effort. However, the binary outcome of

achieving the milestone does not provide sufficient information on the agent’s effort level due to

uncertainty. Thus, the principal’s contracting problem is subject to the hidden action issue. The

agent chooses her business effort level based on the incentive compatibility (IC) constraint that

maximizes her net utility.

The timing of the game is the same as the main model. The principal offers the contract

specifying the transfer to the agent contingent on whether the milestone is achieved. If the agent

accepts the contract, the principal chooses e, and then the agent chooses x. Thereafter, the startup

performance is realized, and the agent obtains payment as specified in the contract. If the agent

rejects the contract, the agent leaves with the reservation utility u = 0.

Due to the informativeness of startup performance, the contracting model here features the ex

ante hidden action.21 Following ex ante hidden action literature(Innes, 1990; Sappington, 1983),

we consider a limited liability assumption together with incentive compatibility constraint and

21Ex ante hidden action means that the agent takes action prior to the realization of states. The effort only alters
the success probabilities, and the principal cannot infer the agent’s effort from the performance realization, which
leads to the agent’s IC constraint being imposed on the principal’s problem.
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participation constraint.22

Let (ŵs,0, ŵf,0, ê0, x̂0) denote the laissez-faire equilibrium,23 where the subscript “0” represents

the zero subsidy. The equilibrium can be solved by the principal’s problem as follows:

max
(ws,0,wf,0,e)

{
E [V (e, ws,0, wf,0)]−

cee
2

2

}
,(30)

s.t. x̌0 = argmax
x
{E [U (x,ws,0, wf,0)]− xcx} ,(31)

U (ws,0) ≥ u and U (wf,0) ≥ u,(32)

E [U (x,wξ,0, wf,0)]− xcx ≥ u,(33)

where E [U (x,ws,0, wf,0)]
.
= p (e, x)U (ws,0) + [1− p (e, x)]U (wf,0) ,

E [V (e, ws,0, wf,0)]
.
= p (e, x)V (πs − ws,0) + [1− p (e, x)]V (πf − wf,0) .

A full characterization of the laissez-faire equilibrium is in the Appendix.24

Let (ŵs,1, ŵf,1, ê1, x̂1) denote the equilibrium under the full Pigouvian subsidy, and the subscript

“1” represents the full Pigouvian subsidy. The principal’s problem is

max
(ws,1,wf,1,e)

{
E [V (e, ws,1, wf,1)]−

cee
2

2

}
,

s.t. x̌1 = argmax
x
{E [U (x,ws,1, wf,1)]− xcx} ,(34)

U (ws,1) ≥ u and U (wf,1) ≥ u.(35)

E [U (x,wξ,0, wf,0)]− xcx ≥ u,(36)

where E [U (x,ws,1, wf,1)]
.
= q (e, x)U (ws,1) + [1− q (e, x)]U (wf,1) ,

E [V (e, ws,1, wf,1)]
.
= q(e, x)V (Ys − ws,1) + [1− q(e, x)]V (Yf − wf,1) .

A full characterization of the equilibrium under the Pigouvian subsidy is in the Appendix.

Comparing these two equilibria, we obtain the following result:

Proposition 9. There exists a parameter range such that the Pigouvian subsidy reduces research

effort, i.e., ê1 < ê0.

Proposition 9 indicates that the perverse welfare effect of the Pigouvian subsidy is robust to the

presence of uncertainty and asymmetric information. We characterize the condition of ě1 < ě0 in the

Appendix. Note that the intuition behind the conditions is not as clear as the main model because

of the coexistence of three problems: positive externalities, asymmetric bargaining power in the

22The limited liability assumption is usually modeled as the nonnegative payment the agent obtains at each state.
Because, in our case, the agent’s utility takes a log-utility functional form, a zero transfer at any state makes the ex
post utility and the ex ante utility approach negative infinity. Thus, we assume, for simplicity, that at each state, the
agent’s wage generates her nonnegative utility.

23Efforts are exerted ex ante before the outcome state is realized, so they are not state-dependent.
24The full characterization is derived from FOC and the binding constraint (32) under the failing state.
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researcher–entrepreneur relationship, and information friction. However, the major driving force

for the subsidy to backfire is the principal’s exploitation of superior bargaining power. Although

the agent can gain positive net utility through information rent if the startup is successful and

achieves a milestone, their level of effort is still inefficiently high due to the replacement effect.

5 Conclusion and Policy Implications

We analyze how subsidies for innovation affect the performance of tech startups under an unbal-

anced researcher–entrepreneur relationship. Pigouvian subsidies tend to strengthen the researcher’s

dominant position and exaggerate the effort distortion problem, leading to unintended perverse wel-

fare effects. Many existing innovation policies that focus on compensating for R&D activities only

address the issue of positive externalities but ignore the internal frictions within startup teams.

Our study offers several policy implications. First, policymakers should supplement innovation

subsidies with policies that can affect the internal structure of tech startups. They can use various

tools to improve the entrepreneur’s outside option value and weaken the researcher’s dominant posi-

tion in the startup. For example, policymakers increase the mobility of the labor market of startup

managers by holding events and creating platforms. Governments, incubators, and university en-

trepreneurship centers can provide entrepreneurs with temporary jobs, such as tutors and managers.

Additionally, it is important for a society to embrace a culture of tolerating entrepreneurs’ failure.

Second, our study demonstrates that the effectiveness of innovation policies depends on the re-

lationship between economic agents. Policymakers should consider how policy intervention changes

the relationship among relevant parties beyond the direct impacts of innovation policies. This

echoes the literature on the national innovation system, which emphasizes the university-industry-

government relationship determines innovation outcomes of an economy (Nelson, 1993; Etzkowitz

and Leydesdorff, 2000; Etzkowitz, 2004).

Last, our results also shed light on other public interventions of externalities, such as the pursuit

of ESG (environmental, social, and governance) goals. Many economic environments are subject

to twofold market failures and cannot be fixed by a single policy tool. For example, Pigouvian

taxes have side effects when firms have market power (Buchanan, 1969; Barnett, 1980; Boyer and

Laffont, 1999). Ganapati et al. (2020) and Fabra and Reguant (2014) find that most emission

costs have been passed on to end users via higher electricity prices. Environmental regulation

could exaggerate market power despite reducing pollution (Cropper and Oates, 1992; Fowlie et al.,

2016). Thus, policymakers should consider the relationship between relevant parties and coordinate

multiple policy tools to address these complex problems.
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Appendix

Proof of Lemma 1.

The conditions are directly obtained from the FOCs of the planner’s program:

max
e,x,w

SW (e, x, w) = V (Y − w)− cee+ U (w)− cxx.

Proof of Lemma 2.

The Lagrangian is

L = ln (π (e, x)− w)− cee+ λ [ln(w)− cxx] .

The FOC of the wage transfer is

ν

π − w
=

λ

w
⇒ ŵ0 =

λ̂0

ν + λ̂0

π.

Combining the FOCs of w, e and x with the binding IR, we obtain the FOCs in the lemma.

Proof of Lemma 5.

From (14) and (3), the equilibrium equity shares are ŵ1

Ŷ1
= λ̂1

ν+λ̂1
and w∗

Y ∗ = 1
1+ν . Therefore, the

inequality, ŵ1

Ŷ1
< w∗

Y ∗ is equivalent to λ̂1 < 1.

First, we prove λ̂1 ̸= 1 by contradiction. Suppose not, i.e., λ̂1 = 1. Then the agent’s equilibrium

equity share is equal to the first-best level, and the FOCs are the same too. The agent obtains

positive net utility in equilibrium, contradicting equation (17).

Second, suppose λ̂1 > 1. Let F (e;x, λ)
.
= cee

λ̂1+ν
−
[
α+ (β − α) t

1+t

]
, where t

.
=

Ag

Aπ

(
x
e

)(1−β)−(1−α)
.

F (e;x, λ) decreases in e.

Because the right-hand side of equation (78) is the same as equation (4) and F (e;x, λ) decreases

in e,

λ̂1 > 1⇒ ê1 > e∗.

Similarly, comparing (16) and (5),

λ̂1 > 1⇒ x̂1 < x∗.

Construct a hypothetical equity share ϵ̃, such that U (ϵ̃Y ∗) = cxx
∗, where Y ∗ .

= Y (e∗, x∗).

Let ϵ̂
.
= λ̂1

λ̂1+ν
. Now the allocation (ϵ̃Y ∗, e∗, x∗) is feasible of the principal’s problem (12). The

optimality of the principal’s problem at (ŵ1, ê1, x̂1) implies his net utility is larger at (ŵ1, ê1, x̂1)
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than (ϵ̃Y ∗, e∗, x∗), i.e.,

V ((1− ϵ̃)Y ∗)− cee
∗ < V

(
(1− ϵ̂1) Ŷ1

)
− ceê1,

(1− ϵ̃)Y ∗ < (1− ϵ̂1) Ŷ1,

(1− ϵ̃)

(1− ϵ̂1)
<

Ŷ1
Y ∗ .

The second inequality is because ê1 > e∗.

From x̂1 < x∗ and the agent’s net utility is zero at (ϵ̃Y ∗, e∗, x∗) and (ŵ1, ê1, x̂1),

U (ϵ̃Y ∗)− cxx
∗ = U

(
(ϵ̂1) Ŷ1

)
− cxx̂1,

U (ϵ̃Y ∗) > U
(
(ϵ̂1) Ŷ1

)
,

ϵ̃Y ∗ > ϵ̂1Ŷ1

ϵ̃

ϵ̂1
>

Ŷ1
Y ∗ .

Therefore,
ϵ̃

ϵ̂1
>

1− ϵ̃

1− ϵ̂1
,⇒ ϵ̂1 < ϵ̃.

From the construction of ϵ̃,

U (ϵ̃Y ∗)− cxx
∗ = 0,

U

(
1

1 + ν
Y ∗
)
− cxx

∗ > 0,

⇒ ϵ̃ <
1

1 + ν
.(37)

Combine (37) and (37), ϵ̂1 <
1

1+ν , contradicting λ̂1 > 1.

Proof of Lemma 3

(a) Consider a hypothetical planner’s optimization program where the only income source is prod-

uct profit:

(38) max
e,x,w

V (π(e, x)− w)− cee+ [U (w)− cxx] .

The FOC of w implies the agent’s equity share in this hypothetical planner’s program is 1
ν+1 . By

Lemma 2, the agent’s equity share in laissez-faire equilibrium is λ̂0

ν+λ̂0
. Because λ̂0 < 1 in Lemma

5, λ̂0

ν+λ̂0
< 1

ν+1 .

(b) The proof consists of two steps.

Step 1: ê0 < e∗∗0 ,where e∗∗0 denotes the solution of (38).
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The FOC of e in (38) is

(1 + ν)α

e∗∗0
= ce ⇒

cee
∗∗
0

1 + ν
= α⇒ e∗∗0 =

(1 + ν)α

ce
.

Given that λ̂0 < 1 from part (a), equation (9) implies

ê0 =
α
(
λ̂0 + ν

)
ce

< e∗∗0 .

Step 2: e∗∗0 < e∗, where e∗ denotes the first-best effort. From FOC of e∗∗,

cee
∗

1 + ν
= α+ (β − α)

t

1 + t
> α =

cee
∗∗
0

1 + ν
.

The last inequality is from t
.
=

Ag

Aπ

(
x
e

)(1−β)−(1−α)
> 0 and (1−α) > (1−β). Combining step 1 and

2, e∗ > e∗∗0 > ê0.

Proof of Proposition 1.

(a) Let t
.
=

Ag

Aπ
r(β−α) denote the ratio of knowledge value to product profit. From the FOCs from

the Pigouvian subsidy problem (15) and (16) and the FOCs for the first-best allocation,

ce
cx

=
α+ (β − α) t̂1

1+t̂1

t̂1

[
(1− α)− (β − α) t̂1

1+t̂1

] ,(39)

ce
cx

=
α+ (β − α) t∗

1+t∗

t∗
[
(1− α)− (β − α) t∗

1+t∗

] .(40)

Comparing (39) and (40), λ̂1 < 1. Because
α+(β−α) t

1+t

r[(1−α)−(β−α) t
1+t ]

decreases in r,

α+ (β − α) t̂1
1+t̂1

r̂1(u)
[
(1− α)− (β − α) t̂1

1+t̂1

] >
α+ (β − α) t∗

1+t∗

r∗
[
(1− α)− (β − α) t∗

1+t∗

]
and r̂1 < r∗.

Comparing the right-hand side of FOC for ê1 to e∗,

α+ (β − α)
t̂1

1 + t̂1
< α+ (β − α)

t∗

1 + t∗
,

⇔ ceê1

λ̂1 + ν
<

cee
∗

1 + ν

⇒ ê1 < e∗,
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where the first inequality is from r̂1 < r∗; the second is from FOCs (15) and (4); and the third is

from λ̂1 < 1.

(b) Similar to part (a),

(1− α)− (β − α)
t̂1

1 + t̂1
> (1− α)− (β − α)

t∗

1 + t∗
,

⇔ λ̂1cx

λ̂1 + ν
x̂1 <

cxx
∗

1 + ν
,

⇒ ê1 > e∗,

where the first inequality is from r̂1 < r∗; the second is from FOCs (16) and (5); and the third is

from λ̂1 < 1.

Proof of Proposition 2.

Step 1: To show ẽ < ê0.

Let (ẽ, x̃) denote the solution of the following hypothetical contracting problem,

max
(w,e)

{
V
(
Age

βx̂(1−β) − w
)
− cee

}
,

s.t. x̂ = argmax
x
{(U(w)− cxx) , u},

The FOCs are

(41)


cee
λ+ν = β

λcxx
λ+ν = (1− β)

ln
(

λ
λ+ν

)
+ ln

(
Age

βx(1−β)
)
= cxx.

(i) Transform (41) as

ln

(
λ

λ+ ν

)
+ ln

(
Age

βx(1−β)
)
= ln

(
λ

λ+ ν
eβx(1−β)

)
+ lnAg,

⇔ λ

λ+ ν
Age

βx(1−β) = exp (cxx) .(42)

Represent the solution of equation (41) ẽ and x̃ by λ̃,

ẽ =
β
(
λ̃+ ν

)
ce

,

x̃ =
(1− β)

cx

(
1 +

ν

λ̃

)
.

33



Plug the equations above back into (42) and define

F (zλ)
.
= β ln(zλ) + bg − (1− β)

(
1 +

ν

zλ

)
,(43)

where g = ln

(
Ag

(
β
ce

)β (
(1−β)
cx

)(1−β)
)

and λ̃ is the solution of F (zλ) = 0.

From (9), (10) and (11),

α ln λ̂0 + bπ = (1− α)

(
1 +

ν

λ̂0

)
,(44)

where bπ
.
= ln

(
Aπ

(
α

ce

)α((1− α)

cx

)(1−α)
)
.

where λ̂0 is the solution of λ in the laissez-faire equilibrium.

(ii) Transforming the comparison of ẽ and ê0 into the comparison of λ̃ and λ̂0,

ẽ < ê0,

⇔
β
(
λ̃+ ν

)
ce

<
α
(
λ̂0 + ν

)
ce

,

⇔λ̃ <
αλ̂0

β
+

(1− β)− (1− α)

β
ν.(45)

Hence, the proof to show ẽ < ê0 is equivalent to the proof of (45).

(iii) This step is to prove F
(
αλ̂0
β + (1−β)−(1−α)

β

)
> 0, where F (·) is defined in(43), if and only if

λ̃ < αλ̂0
β + (1−β)−(1−α)

β ν.

Because F ′(zλ) =
β
zλ

+ (1−β)ν
z2λ

> 0, F (zλ) is monotonically increasing in zλ.

Because F (λ̃) = 0 from the definition equation (43),

αλ̂0

β
+

(1− β)− (1− α)

β
ν > λ̃

⇔F

(
αλ̂0

β
+

(1− β)− (1− α)

β
ν

)
> 0.

(iv) We find a lower bound of F
(
αλ̂0
β + (1−β)−(1−α)

β

)
and she that it is positive under conditions

(18) and (19).

The lower bound is F
(
αλ̂0
β

)
+ ν((1−β)−(1−α))

β F ′
(
αλ̂0
β

)
.

Because (1− α) > (1− β), (1−β)−(1−α)
β < 0.

34



Because F ′′(zλ) = − β
z2λ
− 2(1−β)ν

z3λ
< 0 and F ′(zλ) > 0,

F ′

(
αλ̂0

β
+

(1− β)− (1− α)

β
ν

)
> F ′(x) > F ′

(
αλ̂0

β

)
,

∀x ∈

(
αλ̂0

β
+

(1− β)− (1− α)

β
ν,

αλ̂0

β

)

⇒ F

(
αλ̂0

β

)
− F

(
αλ̂0

β
− (β − α)

β
ν

)
=

ˆ αλ̂0
β

αλ̂0
β

− (β−α)
β

F ′(x)dx,

<

ˆ αλ̂0
β

αλ̂0
β

− (β−α)
β

F ′

(
αλ̂0

β
+

(1− β)− (1− α)

β

)
dx,

=
(β − α)

β
νF ′

(
αλ̂0

β
− (β − α)

β
ν

)
.

Hence,

F

(
αλ̂0

β
+

(1− β)− (1− α)

β
ν

)
> F

(
αλ̂0

β

)
− (β − α)

β
F ′

(
αλ̂0

β
− (β − α)

β
ν

)
,

where F (·) is defined in equation (43) and λ̂0 is the laissez-faire equilibrium λ.

(v)

F

(
αλ̂0

β

)
− (β − α)

β
νF ′

(
αλ̂0

β
− (β − α)

β
ν

)
> 0,

⇔F

(
αλ̂0

β

)
>

(β − α)

β
νF ′

(
αλ̂0

β
− (β − α)

β
ν

)
,(46)

where F (x) is defined in (43).

Expand both sides of inequality (46), we have

F

(
αλ̂0

β

)
= β ln

(
αλ̂0

β

)
+ bg − (1− β)

1 +
ν

αλ̂0
β


= β ln

(
αλ̂0

)
+ bg − β lnβ − (1− β)

(
1 +

νβ

αλ̂0

)
,

(β − α)

β
νF ′

(
αλ̂0

β
− (β − α)

β

)
=

(β − α) ν

β
(
αλ̂0
β −

(β−α)
β ν

)
β +

(1− β)ν

αλ̂0
β −

(β−α)
β ν


=

(β − α) ν

αλ̂0 − (β − α) ν

(
β +

(1− β)νβ

αλ̂0 − (β − α) ν

)
.
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Therefore, (46) is equivalent to

β ln
(
αλ̂0

)
+bg − β lnβ − (1− β)

(
1 +

νβ

αλ̂0

)
,

>
(β − α) ν

αλ̂0 − (β − α) ν

(
β +

(1− β)νβ

αλ̂0 − (β − α) ν

)
,

ln
(
αλ̂0

)
+
bg
β
− lnβ − (1− β)

(
1

β
+

ν

αλ̂0

)
,

>
(β − α) ν

αλ̂0 − (β − α) ν

(
1 +

(1− β)ν

αλ̂0 − (β − α) ν

)
.(47)

The next step proves conditions (18) and (19) are sufficient for (47).

(vi) This step transforms the left-hand side of (47).

Because α ln λ̂0 = (1− α)
(
1 + ν

λ̂0

)
− bπ, from (44),

ln
(
αλ̂0

)
+
bg
β
− lnβ − (1− β)

(
1

β
+

ν

αλ̂0

)
= ln λ̂0 +

bg
β
− ln

(
β

α

)
− (1− β)

(
1

β
+

ν

αλ̂0

)
=

(1− α)

α

(
1 +

ν

λ̂0

)
− bπ

α
+ ln

(
α

β

)
+

bg − (1− β)

β
+

ν(1− β)

αλ̂0

.

Therefore, inequality (47) is equivalent to

(1− α)

α

(
1 +

ν

λ̂0

)
− bπ

α
+ ln

(
α

β

)
+

bg − (1− β)

β
+

ν(1− β)

αλ̂0

>
(β − α) ν

αλ̂0 − (β − α) ν

(
1 +

(1− β)ν

αλ̂0 − (β − α) ν

)
.

(vii) To show the transformed version of inequality (47) holds.

Because αλ̂0 ∈ (0, 1),

αλ̂0 − (β − α) ν + (1− β)ν

αλ̂0 − (β − α) ν
=

αλ̂0 − (1− α)ν + 2(1− β)ν

αλ̂0 − (1− α)ν + (1− β)ν
< 2.

Therefore, the right-hand side of (47) is below 2(β−α)ν

αλ̂0−(β−α)ν
, i.e.,

2 (β − α) ν

αλ̂0 − (β − α) ν
>

(β − α) ν

αλ̂0 − (β − α) ν

(
1 +

(1− β)ν

αλ̂0 − (β − α) ν

)
.
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Let x0 denote the intersection of (1− α)
(
1 + ν

x

)
− bπ at x-axis, thus,

(1− α)

(
1 +

ν

x0

)
− bπ = 0,

(1− α)

(
1 +

ν

λ̂0

)
− bπ = α ln λ̂0,

α ln 1 = 0,

where the second equation is because α ln λ̂0 intersects (1− α)
(
1 + ν

λ̂0

)
− bπ at λ̂0; and the last is

because α lnx intersects x-axis at 1.

Because α lnx increases in x and (1− α)
(
1 + ν

x

)
− bπ decreases in x, λ̂0 ∈ (x0, 1).

Because ν
x0

= bπ
(1−α) − 1, ν

λ̂0
< bπ

(1−α) − 1.

Condition (19) leads to

(β − α)

[
bπ

(1− α)α
− 1

(1− α)
− 2

ν((1− α) + (1− β))

]
< 1,

⇔1− 2 (β − α)

ν((1− α) + (1− β))
>

(β − α) bπ
(1− α)α

− (β − α)

(1− α)
>

(β − α)

α

ν

λ̂0

⇔1− (β − α) ν

αλ̂0

>
2 (β − α)

((1− α) + (1− β))
,

⇔αλ̂0 − (β − α) ν

αλ̂0

>
2 (β − α)

((1− α) + (1− β))
,

⇔ν ((1− α) + (1− β))

αλ̂0

>
2 (β − α) ν

αλ̂0 − (β − α) ν
.(48)

Thus, condition (19) ensures that

ν ((1− α) + (1− β))

αλ̂0

>
2 (β − α) ν

αλ̂0 − (β − α) ν

Combining inequality (48) and αλ̂0−(β−α)ν+(1−β)ν

αλ̂0−(β−α)ν
< 2,

ν ((1− α) + (1− β))

αλ̂0

>
(β − α) ν

αλ̂0 − (β − α) ν

(
1 +

(1− β)ν

αλ̂0 − (β − α) ν

)
(viii) condition (18) leads to

bg
β
− bπ

α
> ln

(
β

α

)
+

(1− β)

β
− (1− α)

α
,

⇔ (1− α)

α
− bπ

α
+ ln

(
α

β

)
+

bg − (1− β)

β
> 0,(49)

Combining inequalities (49) and (48),
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(1− α)

α

(
1 +

ν

λ̂0

)
− bπ

α
+ ln

(
α

β

)
+

bg − (1− β)

β
+

ν(1− β)

αλ̂0

>
(β − α) ν

αλ̂0 − (β − α) ν

(
1 +

(1− β)ν

αλ̂0 − (β − α) ν

)
.

Hence, condition (18) ensures that

(1− α)

α
− bπ

α
+ ln

(
α

β

)
+

bg − (1− β)

β
> 0.

Therefore, ẽ < ê0.

Step 2: To show ẽ > ê1, where ẽ is the hypothetical equilibrium in (41).

Define De(r) as the right-hand side of equation (15), where r
.
= e

x . Let t =
Ag

Aπ

(
x
e

)(1−β)−(1−α)
,

and T (r)
.
= t

1+t ,

De(r) = α+ ((β − α))
t

1 + t

= β − ((β − α))T (r)

⇒De(r) ∈ (α, β).

Similarly define Dx(r) from equation (16) and Dx(r) ∈ ((1− β), (1− α)).

(50)


cee
λ+ν = β − (β − α)T (r)

λcxx
λ+ν = (1− β) + (β − α)T (r)

ln
(

λ
λ+ν

)
+ lnY (e, x) = cxx.

Rearranging equation (41), (λ̃, r̃) is the unique solution o

(51)

 cer
cx

= λβ
1−β

exp
(
(1− β)

(
1 + ν

λ

))
= (1−β)

cx
rβAg.

Rearranging equation (50), (λ̂1, r̂1) is the unique solution of the following equations,

cer

cx
=

λ (β − ((β − α))T (r))

(1− β) + ((β − α))T (r)
(52)

exp
(
((1− β) + (β − α))T (r))

(
1 +

ν

λ

))
=

(1− β) + ((β − α))T (r)

cx
rβ
(
Ag +Aπr

(1−β)−(1−α)
)
.

(53)

Define F̃ (r) and F̂ (r) by the functions characterizing λ in the first equation of (51) and equation
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(52). Similarly define G̃(r) and Ĝ(r) from the second equation of (51) and equation (53).

F̂ (r) =
cer

cx

((1− β) + ((β − α))T (r))

β − ((β − α))T (r)
>

cer

cx

(
1− β

β

)
= F̃ (r)

G̃(r) = ν

 ln
(
(1−β)
cx

rβAg

)
1− β

− 1

−1

Ĝ(r) = ν

 ln
(
(1−β)+(β−α)T (r)

cx

(
Agr

β +Aπr
α
))

[(1− β) + (β − α))T (r)]
− 1

−1

< G̃(r),

where the last inequality is proved as follows. Let Re (r)
.
= β − t(r)(β−α)

1+t(r) , where t (r)
.
=

Ag

Aπ
rβ−α.

First, define g (R)
.
=

(1−R)Agrβ

cx exp(1−R) where R ∈ [Re(r), β] with Re(r) defined above.

Take the derivative with regard to R,

g
′
(R) ∝

d
(
ln(1−R)
1−R

)
dR

∝ 1−R

1−R
+

ln (1−R)

(1−R)2
> 0.

Thus, g increases in R. Let Ĥ(r)
.
=

(1−Re(r))[Agrβ+Aπrα]
cx exp(1−Re(r))

and H̃ (r)
.
=

(1−β)Agrβ

cx exp(1−β) .

Because Re (r) < β, ∀r,

H̃ (r) <
(1−Re (r))Agr

β

cx exp (1−Re (r))
< Ĥ(r).

Let z
.
= exp

(
1 + ν

λ

)
, then λ = ν

ln z−1 . From the definitions of G̃ and Ĝ, they are the inverse

functions of z = H̃(r) and z = Ĥ(r), i.e., G̃−1 (·) = ν
ln(H̃(r))−1

and Ĝ−1 (·) = ν
ln(Ĥ(r))−1

.

Hence, for each given λ, G̃ (λ) > Ĝ (λ). Because F̃ (r) and F̂ (r) increase in r and G̃(r) and Ĝ(r)

decrease at r, λ̂1 < λ̃. Therefore,

ê1 = (β − T (r̂1) (β − α))
λ̂1 + ν

ce
< β

λ̂1 + ν

ce
< β

λ̃1 + ν

ce
= ẽ.

Combining Steps 1 and 2, ê1 < ẽ < ê0.

Proof of Corollary 2.

We first prove that when ê1 < ê0, λ̂1 < λ̂0. Then, λ̂1 < λ̂0 implies ŵ1 < ŵ.

From FOCs of two market equilibria, equations (9) and (15) imply

ceê0

λ̂0 + ν
= α < α+ (β − α)

t̂1

1 + t̂1
=

ceê1

λ̂1 + ν
.
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Rearrange the inequality above,
λ̂1 + ν

λ̂0 + ν
<

ê1
ê0

< 1.

Hence, λ̂1 < λ̂0.

According to equations (8) and (17), the equity share in laissez-faire equilibrium (ϵ̂0) and the

equity share with the full Pigouvian subsidy (ϵ̂1) satisfy

ϵ̂1
.
=

ŵ1

Ŷ1
=

λ̂1

ν + λ̂1

<
λ̂0

ν + λ̂0

= ϵ̂.

Proof of Corollary 1.

From Proposition 2, conditions (18) and (19) ensure ê1 < ê0. Then, in the proof of Corollary 2,

λ̂1 < λ̂0 and ê1 < ê0. Let ϵ̂1
.
= ŵ1

Ŷ1
and ϵ̂0

.
= ŵ0

π̂0
, then ϵ̂1 < ϵ̂0.

The social welfare function is

SW (e, x, ϵ) = (1 + ν) lnY + ν ln (1− ϵ) + ln ϵ− ece − xcx.

From the FOCs,

SWϵ(ê0, x̂0, ϵ̂0) =
ν

1− ϵ
+

1

ϵ
> 0, ∀ϵ ∈ [ϵ̂1, ϵ̂0]

SWϵϵ(ê0, x̂0, ϵ) ≤ 0,∀ϵ ∈ [ϵ̂1, ϵ̂0] ,

where inequality is from ϵ̂0 <
1

1+ν . Then, from ϵ̂1 < ϵ̂0,

(54) SW (ê0, x̂0, ϵ̂1) < SW (ê0, x̂0, ϵ̂0).

Similarly, let t
.
=

Ag

Aπ

(
e
x

)β−α

SWe(ê0, x̂0, ϵ̂0) =
(1 + ν)

ê0

(
β − β − α

1 + t (ê0, x̂0)

)
− ce

∝ β − β − α

1 + t (ê0, x̂0)
− ceê0

1 + ν

= β − β − α

1 + t (ê0, x̂0)
−

α
(
ν + λ̂0

)
1 + ν

> β − β − α

1 + t (ê0, x̂0)
− α

= (β − α)

(
1− 1

1 + t (ê0, x̂0)

)
> 0,
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where the inequality is because λ̂0 < 1.

Then for ∀e ∈ [ê1, ê0],

SWe (e, x̂0, ϵ̂0) ∝ β − β − α

1 +
Ageβ−α

Aπx̂
β−α
0

− cee

1 + ν

≥ β − β − α

1 + t (ê0, x̂0)
− ceê0

1 + ν
> 0

SWee (e, x̂0, ϵ) ≤ 0,

where the last inequality of second-order derivative is from the regularity assumption that social

welfare function is concave at each variable. Therefore, from ê1 < ê0,

(55) SW (ê1, x̂0, ϵ̂1) < SW (ê0, x̂0, ϵ̂1) .

Take the first-order derivative of social welfare function with regard to x,

SWx (ê1, x̂1, ϵ̂1) =
(1 + ν)

x̂1

(
1− β +

β − α

1 + t (ê1, x̂1)

)
− cx

∝ 1− β +
β − α

1 + t (ê1, x̂1)
− cxx̂1

1 + ν

= 1− β +
β − α

1 + t (ê1, x̂1)
−

1− β + β−α
1+t(ê1,x̂1)

(1 + ν) λ̂1

λ̂1+ν

=

(
1− β +

β − α

1 + t (ê1, x̂1)

)(
1−

1 + ν
λ̂1

(1 + ν)

)
< 0,

where the last inequality is from λ̂1 < 1 and t
.
=

Ag

Aπ

(
e
x

)β−α
. Similarly as before,

SWx (ê1, x̂0, ϵ̂1) ∝ 1− β +
β − α

1 +
Ag ê

β−α
1

Aπxβ−α

− cxx̂0
1 + ν

< 1− α− cxx̂0
1 + ν

=
λ̂0cxx̂0

λ̂0 + ν
− cxx̂0

1 + ν
< 0.

Also, from the regularity assumption of concave social welfare function, SWxx (e, x, ϵ) ≤ 0.

Therefore, for any x ∈ [x̂0, x̂1],

SWx (ê1, x, ϵ̂1) ≤ sup {SWx (ê1, x̂0, ϵ̂1) , SWx (ê1, x̂1, ϵ̂1)} < 0(56)
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FOC of x̂1 is

cx =
λ̂1(

λ̂1 + ν
)
x̂1

(
1− β +

β − α

1 + t (ê1, x̂1)

)

⇒ x̂1 =
λ̂1(

λ̂1 + ν
)
cx

(
1− β +

β − α

1 + t (ê1, x̂1)

)

>
λ̂1(

λ̂1 + ν
)
cx

(1− α)

>
λ̂0(

λ̂0 + ν
)
cx

(1− α) = x̂0,

where t
.
=

Ag

Aπ

(
e
x

)β−α
and the first inequality is from t (ê1, x̂1) > 0 and the second inequality is from

λ̂1 < λ̂0.

From x̂1 > x̂0 and inequality (56),

SW (ê1, x̂1, ϵ̂1) < SW (ê1, x̂0, ϵ̂1) .

Combine the inequality above with (54) and (55),

SW (ê1, x̂1, ϵ̂1) < SW (ê1, x̂0, ϵ̂1) < SW (ê0, x̂0, ϵ̂1) < SW (ê0, x̂0, ϵ̂0),

which is equivalent to SW (ê1, x̂1, ŵ1) < SW (ê0, x̂0, ŵ0) where the social welfare levels are uniquely

solved by the equilibrium allocations.

Proof of Corollary 3.

From Proposition 2, if condition (18) is satisfied under Ag,

bg(A
′
g)

β
− bπ

α
>

bg(Ag)

β
− bπ

α

> ln

(
β

α

)
+

1− β

β
− 1− α

α
,

where bπ and other parameters stay the same and bg(A
′
g)

.
= ln

(
A

′
g

(
β
ce

)β (
1−β
cx

)1−β
)
.

Hence, ê1 < ê0 under A
′
g > Ag.

Proof of Proposition 3.

Step 1 establishes the necessary and sufficient conditions for all cases of the optimal subsidy’s value,

including µ∗ = 0 and µ∗ ∈ (0, 1). The first part is the building block of this proof, and the second
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part applies to Proposition 4.

Step 1: Sufficient and necessary condition

From the continuity of the objective function (20) and the compactness of the feasible set of e

defined by constraint (21) and (22), the function eµ is continuous and the optimal subsidy includes

three cases,

(a) µ∗ = 0 if and only if limµ→0
∂e(µ)
∂µ ≤ 0 and ê0 ≥ ê1;

(b) µ∗ ∈ (0, 1) if and only if limµ→0
∂e(µ)
∂µ > 0 and limµ→1

∂e(µ)
∂µ ≤ 0.

(c) µ∗ = 1 if and only if limµ→1
∂e(µ)
∂µ > 0 and ê0 < ê1.

Step 2: sufficient condition for (57)

From Proposition 2, conditions (18) and (19) ensure ê0 > ê1. According to the previous step,

what remains to be proven is that under (23) and (24),

(57) lim
µ→0

∂e(µ)

∂µ
≤ 0.

Below proves the claim above in two sub-steps. (i) To show condition (57) is equivalent to r̂0 ≥
2c2xν

ce
(

(1−α)2

α
+b2

) .
Let Ãg

.
= µAg. The efforts level solving constraint (21) is equivalent to

max
e

{
ν ln

(
ν

ν + λ

(
Aπe

αx(1−α) + Ãge
βx(1−β)

))
− cee

}
,(58)

cxx = ln

(
λ

ν + λ

(
Aπe

αx(1−α) + Ãge
βx(1−β)

))
,∀e.(59)

FOC of (58) with regard to e is

e(µ)ce
λ(µ) + ν

=α+ (β − α)

µAg

Aπ
r(β−α)

1 +
µAg

Aπ
r(β−α)

= β − (β − α)

1 +
µAg

Aπ
r(β−α)

.

e(µ) =
Re(Ãg)

(
λ(Ãg) + ν

)
ce

,where Re(Ãg)
.
= β − (β − α)

1 +
Ãg

Aπ
r(β−α)

.

Let r
.
= e

x and Rx
.
= (1− β) + (β−α)

1+µk . The FOC of x and the constraint (59) imply that

cer

cxλ
=

Re

1−Re
⇒ λ =

(1−Re) cer

Recx
.

Combining the above equation and e =
(
λ(Ãg) + ν

)
Re(Ãg),
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∂e(µ)

∂µ
=Ag

∂
((

λ(Ãg, r) + ν
)
Re(Ãg, r)

)
∂Ãg

∝
∂
((

λ(Ãg, r) + ν
)
Re(Ãg)

)
∂Ãg

,

=Re(Ãg)
d
(
λ(Ãg, r) + ν

)
dÃg

+
(
λ(Ãg) + ν

) dRe(Ãg, r)

dÃg

,

=
dRe(Ãg, r)

dÃg

(
λ(Ãg, r) + ν

)
+ λÃg

(Ãg, r)Re(Ãg) +
∂r

∂Ãg

[
dRe

dr

(
λ(Ãg) + ν

)
+ λ′(r)Re(Ãg)

]
.(60)

where r
.
= e

x . R
′
e(Ãg), λ′(Ãg), R′

e(r), λ′(r) are

dRe

dr
=
(β − α)2

Ãg

Aπ
r(β−α)−1(

1 +
Ãg

Aπ
r(β−α)

)2 ≥ 0,(61)

dRe

dÃg

=
(β − α) r(β−α)

Aπ

(
1 +

Ãg

Aπ
r(β−α)

)2 > 0,(62)

λ′(Ãg) =
dλ

dRe

(
dRe

dÃg

)
= − cer

R2
e(Ãg)cx

dRe

dÃg

,(63)

∂λ

∂r
=

dλ

dRe

(
dRe

dr

)
+

dλ

dr
= − cer

R2
ecx

(
dRe

dÃg

Ãg

r

)
+

(1−Re) ce
Recx

,(64)

where ỹ = Aπr
α + Ãgr

β, and Rx = 1−Re(Ãg).

Plugging the above equation into (60) which is denoted as f(Ãg) below

lim
Ãg→0

f(Ãg) = lim
Ãg→0

{
dRe(Ãg)

dÃg

(
λ̂0 + ν

)
− cerRe

R2
e(Ãg)cx

dRe

dÃg

+
∂r

∂Ãg

[
dRe

dr

(
λ̂0 + ν

)
+ λ′(r)Re(Ãg)

]}
,

= lim
Ãg→0

dRe(Ãg)

dÃg

(
λ̂0 + ν

)
− cerα

R2
ecx

dRe

dÃg

+
∂r

∂Ãg

dRe

dÃg

Ãg

(
λ̂0 + ν

)
r (β − α)

+
(1−Re) ce

cx

 ,

= lim
Ãg→0

{
dRe(Ãg)

dÃg

(
λ̂0 + ν

)
− cer̂0

αcx

dRe

dÃg

+
∂r

∂Ãg

[
(1− α) ce

cx

]}
,

=

(
λ̂0 + ν − cer̂0

αcx

)
lim

Ãg→0

dRe(Ãg)

dÃg

+
(1− α) ce

cx
lim

Ãg→0

∂r

∂Ãg

,

=

(
(1− α) cer̂0

αcx
+ ν − cer̂0

αcx

)
lim

Ãg→0

dRe(Ãg)

dÃg

+
(1− α) ce

cx
lim

Ãg→0

∂r

∂Ãg

,

=

(
ν − cer̂0

cx

)
lim

Ãg→0

dRe(Ãg)

dÃg

+
(1− α) ce

cx
lim

Ãg→0

∂r

∂Ãg

,

=

(
ν − cer̂0

cx

)
(β − α) r̂

(β−α)
0

Aπ
+

(1− α) ce
cx

lim
Ãg→0

∂r

∂Ãg

.
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The equality is from dRe
dr = dRe

dÃg

Ãg(β−α)
r at the laissez-faire equilibrium level.

From FOC and the participation constraint, r(Ãg) solves the equation below

(65) ln


(
1−Re(Ãg)

)
cx

(
Aπr

α + Ãgr
β
)− (1−Re(Ãg)

)
− νcx

cer
Re(Ãg) = 0.

Take derivative with regard to Ãg and according to the implicit function theorem,

(66)
∂r

∂Ãg

= −
R′

x(Ãg)

(
Re(Ãg)

1−Re(Ãg)
+

ν(1−Re(Ãg))
cer

)
+

ỹ
′
(Ãg)
ỹ

R′
x(r)

[
Re(Ãg)

1−Re(Ãg)
+ νcx

rce

]
+ ỹ′ (r)

ỹ + νcx
cer2

Re(Ãg)
,

where ỹ
.
= Aπr

α + Ãgr
β.

lim
Ãg→0

r′(Ãg) = − lim
Ãg→0

R′
x(Ãg)

(
α

1−α + ν(1−α)
cer̂0

)
+

ỹ
′
(Ãg)
ỹ

ỹ′ (r)
ỹ + ανcx

cer2

= − lim
Ãg→0

− (β−α)r̂r
β−α

0
Aπ

(
α

1−α + ν(1−α)
cer̂0

)
+ 1

Aπ r̂
α−β
0

α
r̂0

+ ανcx
cer̂20

=

r̂
β−α

0
Aπ

[
1− (β − α)

(
α

1−α + ν(1−α)
cer̂0

)]
α
r̂0

+ ανcx
cer̂20

.

From the above representation of limÃg→0 f(Ãg) and limÃg→0 r
′(Ãg), condition (57), i.e., limÃg→0 f(Ãg) ≤

0 is equivalent to,

lim
Ãg→0

∂r

∂Ãg

≤
(
cer̂0
cx
− ν

)
(β − α) cxr̂

β−α
0

(1− α) ceAπ

⇔
r̂
β−α

0
Aπ

[
1− (β − α)

(
α

1−α + ν(1−α)
cer̂0

)]
α
r̂0

+ ανcx
cer̂20

≤
(
cer̂0
cx
− ν

)
(β − α) cxr̂

(β−α)
0

(1− α) ceAπ

⇔

[
1− (β − α)

(
α

1−α + ν(1−α)
cer̂0

)]
1 + νcx

cer̂0

≤
(
ce
cx
− ν

r̂0

)
α (β − α) cx
(1− α) ce

⇔1− (β − α)

(
α

1− α
+

ν (1− α)

cer̂0

)
≤
(
1 +

νcx
cer̂0

)(
ce
cx
− ν

r̂0

)
α (β − α) cx
(1− α) ce

.
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Let t
.
= ν

r̂0
and b1

.
= cx

ce
. The above inequality is transformed into

1− α

α (β − α)
−

(
1 +

t̂0 (1− α)2

ceα

)
≤
(
1 + t̂0b1

)( 1

b1
− t̂0

)
b1

⇔ 1− α

α (β − α)
−

(
1 +

t̂0 (1− α)2

ceα

)
≤ 1− b21t̂

2
0

⇔b21t̂
2
0 −

(1− α)2

ceα
t̂0 +

1− α

α (β − α)
− 2 ≤ 0.

t̂0 ∈

[
ce
2c2x

(
(1− α)2

α
− b2

)
,

ce
2c2x

(
(1− α)2

α
+ b2

)]
∩ ℜ+

where b2
.
=

√√√√1− α

α

(
(1− α)3

α
− 4c2x

β − α

)
.

Under condition (24), ce
2c2x

(
(1−α)2

α − b2

)
≤ 0, thus, t̂0 ∈

[
0, ce

2c2x

(
(1−α)2

α + b2

)]
. The corre-

sponding range of r̂0 is

(67) r̂0 =
ν

t̂0
≥ 2c2xν

ce

(
(1−α)2

α + b2

)
Hence, Condition (67) is the necessary and sufficient condition for (57).

(ii) Condition(23) and (24) sufficient for Condition (67).

Let F (r) denote the left-hand side of equation (65) under Re(Ãg) = α and Ãg = 0, i.e.,

F (r)
.
= ln

(
1−α
cx

Aπr
α
)
− (1− α)− ναcx

cer
. First, r̂0 solves equation F (r) = 0. Second, F (r) increases

in r, because ln (Aπr
α) increases in r and νcx

cer
Re(Ãg) decreases in r. Combing the above two facts,

condition (67) is equivalent to

F

 2c2xν

ce

(
(1−α)2

α + b2

)
 ≤ 0,

where b2
.
=

√
1−α
α

(
(1−α)3

α − 4c2x
β−α

)
.

2c2xν

ce

(
(1−α)2

α + b2

) ≤ 2c2xν

ce

(
(1−α)2

α +

√
1−α
α

(
(1−α)3

α

)) =
νc2xα

ce (1− α)2
.
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Thus, a sufficient condition for (67) is

F

(
νc2xα

ce (1− α)2

)
≤ 0,

⇔ ln

(
Aπν

α (1− α)1−2α

cαe c
1−2α
x

)
≤ (1− α) +

(1− α)2

cx
,

where the first line is from F

(
2c2xν

ce
(

(1−α)2

α
+b2

)
)
≤ F

(
νc2xα

ce(1−α)2

)
. This proves the sufficiency of

condition (23) and (24) for (57). Together with Step 1, the conditions are sufficient.

Proof of Proposition 4.

According to Step 1 in Proposition 3, we only need to prove the given conditions is sufficient for

lim
µ→0

∂e(µ)

∂µ
≥ 0,(68)

lim
µ→1

∂e(µ)

∂µ
≤ 0.(69)

Step 1: To show condition (27) sufficient for equation (68)

Let Ãg
.
= µAg. The constraint (21) is equivalent to solving the equilibrium efforts from the

optimization problem below

max
e

{
ν ln

(
ν

ν + λ

(
Aπe

αx(1−α) + Ãge
βx(1−β)

))
− cee

}
,(70)

cxx = ln

(
λ

ν + λ

(
Aπe

αx(1−α) + Ãge
βx(1−β)

))
,∀e.

FOC of (70) with regard to e is

e(µ)ce
λ(µ) + ν

=α+ (β − α)

µAg

Aπ
r(β−α)

1 +
µAg

Aπ
r(β−α)

= β − (β − α)

1 +
µAg

Aπ
r(β−α)

.

Thus, the equilibrium efforts satisfy

e(µ) =
Re(Ãg)

(
λ(Ãg) + ν

)
ce

, where Re(Ãg)
.
= β − (β − α)

1 +
Ãg

Aπ
r(β−α)

Let r
.
= e

x and Rx
.
= (1− β) + (β−α)

1+µk . The FOC of x and the constraint (59) imply that

cer

cxλ
=

Re

1−Re
⇒ λ =

(1−Re) cer

Recx
,
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Combine the equation above and e =
(
λ(Ãg) + ν

)
Re(Ãg),

∂e(µ)

∂µ
∝dRe(Ãg, r)

dÃg

(
λ(Ãg, r) + ν

)
+ λÃg

(Ãg, r)Re(Ãg) +
∂r

∂Ãg

[
dRe

dr

(
λ(Ãg) + ν

)
+ λ′(r)Re(Ãg)

]
,

where r
.
= e

x and R′
e(Ãg), λ′(Ãg), R′

e(r), λ′(r) are all partial derivatives given as before (61), (62),

(63) and (64). where ỹ = Aπr
α + Ãgr

β, and Rx = 1−Re(Ãg).

Let f(Ãg) denote the function (60) and r̂0
.
= ê0

x̂0
. Pluggiing (61), (62), (63) and (64) in f(Ãg),

lim
Ãg→0

f(Ãg) =

(
ν − cer̂0

cx

)
(β − α) r̂

(β−α)
0

Aπ
+

(1− α) ce
cx

lim
Ãg→0

∂r

∂Ãg

,

where the equality is from dRe
dr = dRe

dÃg

Ãg

r(β−α) with variables at the laissez-faire equilibrium level.

From FOC and the participation constraint, r(Ãg) solves

(71) ln


(
1−Re(Ãg)

)
cx

(
Aπr

α + Ãgr
β
) =

(
1−Re(Ãg)

)
− νcx

cer
Re(Ãg).

lim
Ãg→0

r′(Ãg) =

r̂
β−α

0
Aπ

[
1− (β − α)

(
α

1−α + ν(1−α)
cer̂0

)]
α
r̂0

+ ανcx
cer̂20

.

Plug the expression of limÃg→0 f(Ãg) and limÃg→0 r
′(Ãg) into condition (68), condition (68) is

equivalent to

lim
Ãg→0

∂r

∂Ãg

≥
(
cer̂0
cx
− ν

)
(β − α) cxr̂

(β−α)
0

(1− α) ceAπ
,

⇔1− (β − α)

(
α

1− α
+

ν (1− α)

cer̂0

)
≥
(
1 +

νcx
cer̂0

)(
ce
cx
− ν

r̂0

)
α (β − α) cx
(1− α) ce

.

Let t̂0
.
= ν

r̂0
and b1

.
= cx

ce
. The above inequality is

1− α

α (β − α)
−

(
1 +

t̂0 (1− α)2

ceα

)
≥
(
1 + t̂0b1

)( 1

b1
− t̂0

)
b1

⇔b21t̂
2
0 −

(1− α)2

ceα
t̂0 +

1− α

α (β − α)
− 2 ≥ 0.
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Hence, t̂0 ≥ ce
2c2x

(
(1−α)2

α + b2

)
is sufficient for the inequality above. The range of r̂0 is

r̂0 =
ν

t̂0
≤ 2c2xν

ce

(
(1−α)2

α + b2

) .
Let F (r) denote the left-hand side of the equation (71) minus its right-hand side under Re(Ãg) =

α. As F (r) increases in r and r̂0 solves F (r) = 0, condition (67) is equivalent to

F

 2c2xν

ce

(
(1−α)2

α + b2

)
 ≥ 0,

where b2
.
=

√
1−α
α

(
(1−α)3

α − 4c2x
β−α

)
.

Plugging in the expression of F (·), the inequality above is equivalent to

ln

(
Aπ (2ν)

α (1− α)

cαe c
1−2α
x

)
− (1− α) (2− α) ≥ α ln

(
(1− α)2

α
+ b2

)
+ αb2,

where b2
.
=

√
1−α
α

(
(1−α)3

α − 4c2x
β−α

)
.

Step 2: Sufficient conditions for (69) For limµ→1 e
′(µ) ≤ 0,

lim
Ãg→Ag

f(Ãg) = lim
Ãg→Ag

{
dRe(Ãg)

dÃg

(
λ̂1 + ν

)
− cer(Ãg)Re

R2
e(Ãg)cx

dRe

dÃg

+
∂r

∂Ãg

[
dRe

dr

(
λ̂1 + ν

)
+ λ′(r)Re(Ãg)

]}
,

=
(β − α) r̂

(β−α)
1

Aπ

(
1 +

Ag

Aπ
r̂
(β−α)
1

)2 [((1−Re) cer̂1
Recx

+ ν

)
− cer̂1

Recx

]
,(72)

+ lim
Ãg→Ag

∂r

∂Ãg

 (β − α) r̂
(β−α)
1

Aπ

(
1 +

Ag

Aπ
r̂
(β−α)
1

)2 cer̂1
R2

ecx

(
(1−Re) cer̂1

Recx
+ ν − AgRe

Aπ r̂1

)
+

(1−Re) ce
cx

 ,(73)

where r̂1
.
= ê1

x̂1
, R̂e,1

.
= α+βk̂1

1+k̂1
and k̂1

.
=

Ag

Aπ
r̂β−α
1 .

Let T1(r) denote term (72) and T2(r) denote the big bracket term in (73). Then the following

three steps prove condition (69) holds if T1(r̂1) ≤ 0, limÃg→Ag

∂r
∂Ãg
≤ 0, and T2(r̂1) ≥ 0.

(i) To show T2(r̂1) ≥ 0 and condition cer̂1
cx
≤ ν ensures T1(r) ≤ 0.

We prove T2 (r̂1) > 0 by contradiction. Suppose there exists parameter value such that T2 (r̂1) ≥
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0. From T2 (r̂1) =
Ag

r T1 (r) +
(1−R̂e,1)ce

cx
with T1(r) and T2(r) defined in term (72) and (73).

T2 (r̂1) ≤ 0

⇔ T1 (r̂1) ≤ −
cer̂1

(
1− R̂e,1

)
cxAg

= − λ̂1R̂e,1

Ag
.

If cer̂1
cx
≤ ν, then

T1 (r) +
R̂e,1λ̂1

Ag
=

dR̂e,1

dAg

(
λ̂1 + ν

)
+ R̂e,1

dλ

dAg
+

λ̂1R̂e,1

Ag

=
dR̂e,1

dAg

(
λ̂1 + ν − cer̂1

R̂e,1cx

)
+

R̂e,1

Ag
λ̂1

∝ ξe

(
λ̂1 + ν − λ̂1

1− R̂e,1

)
+ λ̂1

= ξe

(
ν − R̂e,1λ̂1

1− R̂e,1

)
+ λ̂1

= ξe

(
ν − cer̂1

cx

)
+

cer̂1

(
1− R̂e,1

)
cxR̂e,1

= ξe

(
ν − cer̂1

cx

)
+

cer̂1

(
1− R̂e,1

)
cxR̂e,1

.

Thus, T2 (r̂1) ≤ 0 is equivalent to

ξe

(
ν − cer̂1

cx

)
+

cer̂1

(
1− R̂e,1

)
cxR̂e,1

≤ 0,

⇔ R̂e,1ξe

1− R̂e,1

≥
cer̂1
cx

cer̂1
cx
− ν

=
1

1− νcx
cer̂1

,

⇔
(β − α)

(
1− νcx

cer̂1

)
(
1 + 1

k̂1

)(
1− α+ (1− β) k̂1

) ≥ 1,

(β − α)

(
1− νcx

cer̂1

)
≥
(
1 +

1

k̂1

)(
1− α+ (1− β) k̂1

)
,(74)

where the third line is from plugging the expression of ξe and R̂e,1 in the second line.
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Let LH(r) and RH(r) denote the left-hand side and the right-hand side of inequality (74):

LH(r)
.
= (β − α)

(
1− νcx

cer

)
RH(r)

.
=

(
1 +

1

k̂1

)(
1− α+ (1− β) k̂1

)
= 2− (α+ β) + (1− β) k +

1− α

k

= 2− (α+ β) +
(1− β)Agr

β−α

Aπ
+

(1− α)Aπr
α−β

Ag
.

Take the first-order derivatives,

LH ′(r) > 0, ∀r

RH ′(r) ≤ 0, if r ≤
(√

1− α

1− β

Aπ

Ag

) 1
β−α

RH ′(r) > 0, if r >

(√
1− α

1− β

Aπ

Ag

) 1
β−α

.

Therefore, limr→0 LH(r) < limr→0RH(r) and limr→+∞ LH(r) < limr→+∞RH(r). It follows that

LH

(√1− α

1− β

Aπ

Ag

) 1
β−α

 < β − α

< 2− (α+ β) + 2
√
(1− α) (1− β)

= RH

(√1− α

1− β

Aπ

Ag

) 1
β−α

 ,

where the second inequality is because 2 − α − β > β − α directly from β ∈ (0, 1) and the first

inequality is from 1− νcx
cer
∈ (0, 1). Because LH(r) < RH(r), ∀r contradicts (74), T2(r) > 0.

51



For T1(r), if
cer̂1
cx
≤ ν,

T1 (r) =
dR̂e,1

dAg

(
λ̂1 + ν

)
+ R̂e,1

dλ

dAg

=
dR̂e,1

dAg

(
λ̂1 + ν − cer̂1

R̂e,1cx

)

∝ ξe

(
λ̂1 + ν − λ̂1

1− R̂e,1

)

= ξe

(
ν − R̂e,1λ̂1

1− R̂e,1

)

= ξe

(
ν − cer̂1

cx

)
≤ 0,

where the inequality is from r̂1 ≥ νcx
ce

.

(ii) Sufficient conditions of r̂1 for limÃg→Ag

∂r
∂Ãg
≥ 0

From the previous results, ∂r
∂Ag

is

∂r

∂Ag
=−

R′
x(Ãg)

(
Re(Ãg)

1−Re(Ãg)
+

ν(1−Re(Ãg))
cer

)
+

ỹ
′
(Ãg)
ỹ

R′
x(r)

[
Re(Ãg)

1−Re(Ãg)
+ νcx

rce

]
+ ỹ′ (r)

ỹ + νcx
cer2

Re(Ãg)
.

Hence,

∂r

∂Ag
≤ 0⇔

R′
x(Ãg)

(
Re(Ãg)

1−Re(Ãg)
+

ν(1−Re(Ãg))
cer

)
+

ỹ
′
(Ãg)
ỹ

R′
x(r)

[
Re(Ãg)

1−Re(Ãg)
+ νcx

rce

]
+ ỹ′ (r)

ỹ + νcx
cer2

Re(Ãg)
≥ 0.(75)

Let N(r̂1) and D(r̂1) denote the limits of the numerator and denominator at Ãg → Ag, i.e., the

left-hand side of (75)

N(r̂1) = lim
Ãg→Ag

R′
x(Ãg)

 Re(Ãg)

1−Re(Ãg)
+

ν
(
1−Re(Ãg)

)
cer

+
ỹ
′
(Ãg)

ỹ

 ,

=− dR̂e,1

dAg

 R̂e,1

1− R̂e,1

+
ν
(
1− R̂e,1

)
cer̂1

+
r̂β−α
1

Aπ +Ag r̂
β−α
1

D(r̂1) = lim
Ãg→Ag

{
R′

x(r)

[
Re(Ãg)

1−Re(Ãg)
+

νcx
rce

]
+

ỹ
′
(r)

ỹ
+

νcx
cer2

Re(Ãg)

}
,

=− dR̂e,1

dr

[
R̂e,1

1− R̂e,1

+
νcx
cer̂1

]
+

(
αAπ + βAg r̂

β−α
1

)
r̂1

(
Aπ +Ag r̂

β−α
1

) +
νcx
cer̂1

R̂e,1

r̂1
,
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where R̂e,1
.
= α+βk̂1

1+k̂1
, k̂1

.
=

Ag

Aπ
r̂β−α
1 and r̂1

.
= ê1

x̂1
.

D(r̂1) =
1

r̂1

−dR̂e,1

dAg
Ag

[
R̂e,1

1− R̂e,1

+
νcx
cer̂1

]
+

αAπ + βAg r̂
β−α
1(

Aπ +Ag r̂
β−α
1

) (1 + νcx
cer̂1

)
∝

[
−dR̂e,1

dAg

Ag

R̂e,1

[
R̂e,1

1− R̂e,1

+
νcx
cer̂1

]
+

(
1 +

νcx
cer̂1

)]

=− ξe

[
R̂e,1

1− R̂e,1

+
νcx
cer̂1

]
+

(
1 +

νcx
cer̂1

)
,

where ξe
.
=

dR̂e,1
dAg

R̂e,1
Ag

. The first and the second line are from R̂e,1 =
αAπ+βAg r̂

β−α
1

Aπ+Ag r̂
β−α
1

, and the third line is

by plugging ξe, the elasticity of Re with regard to Ag in the second line.

D(r̂1) ≥ 0⇔1 +
νcx
cer̂1

≥ ξe

[
R̂e,1

1− R̂e,1

+
νcx
cer̂1

]

⇔ξe ≤
1 + νcx

cer̂1

R̂e,1

1−R̂e,1
+ νcx

cer̂1

.

Next, we show that ξe ≤
1+ νcx

cer̂1
R̂e,1

1−R̂e,1
+ νcx

cer̂1

also ensures N (r̂1) ≥ 0.

Plugging the expression of
dR̂e,1

dAg
in (62) into N(r̂1) and let R̂e,1

.
= α+βk̂1

1+k̂1
with k̂1

.
=

Ag

Aπ
r̂β−α
1 ,

N(r̂1) ≥ 0,

⇔dR̂e,1

dAg

 1 + k̂1

1− α+ (1− β) k̂1
+

(
1− R̂e,1

)
ν

cxλ̂1R̂e,1

 ≤ k̂1

(
1 + k̂1

)
(
α+ βk̂1

)
Ag

,

⇔ξeR̂e,1

 1

1− R̂e,1

+
ν
(
1− R̂e,1

)
R̂e,1

cer̂1(1−R̂e,1)
R̂e,1

 ≤ k̂1

α+ βk̂1
,

⇔ξe ≤
k̂1

α+βk̂1

R̂e,1

1−R̂e,1
+

νR̂e,1

cer̂1

,(76)

where ξe
.
=

dR̂e,1
dAg

R̂e,1
Ag

denote the elasticity ofRe with regard toAg and the third line is from
cer̂1(1−R̂e,1)

R̂e,1
=

cxλ̂1 and
dR̂e,1

dAg
Ag = ξeR̂e,1.

Hence, ∂r
∂Ag
≤ 0 under condition (76).

Combine the previous results, (76) is sufficient for N(r̂1) ≥ 0, and r̂1 ≥ νcx
ce

sufficient for
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T1(r̂1) ≤ 0.

Plugging expression of
dR̂e,1

dAg
and rearranging (76) into the following

β − α(
1 + 1

k̂1

)(
1 + k̂1

) ( 1 + k̂1

1− α+ (1− β) k̂1
+

ν

cer̂1

)
≤ k̂1

α+ βk̂1

⇔ (β − α) k̂1(
1 + k̂1

)
 1

1− α+ (1− β) k̂1
+

ν

cer̂1

(
1 + k̂1

)
 ≤ k̂1

α+ βk̂1

⇔ (β − α)(
1 + k̂1

)
 1

1− α+ (1− β) k̂1
+

ν

cer̂1

(
1 + k̂1

)
 ≤ 1

α+ βk̂1

⇔ 1

1− α+ (1− β) k̂1
+

ν

cer̂1

(
1 + k̂1

) ≤ 1 + k̂1

(β − α)
(
α+ βk̂1

) .(77)

From r̂1 ≥ νcx
ce

,
ν

cer̂1

(
1 + k̂1

) ≤ 1

cx

(
1 + k̂1

) .
A sufficient condition for (c) is thus

1

1− α+ (1− β) k̂1
+

1

cx

(
1 + k̂1

) ≤ 1 + k̂1

(β − α)
(
α+ βk̂1

)
⇔ cx

(
1 + k̂1

)2 (
1− α+ (1− β) k̂1

)
≥ (β − α)

(
α+ βk̂1

)(
1 + cx − α+ (1 + cx − β) k̂1

)
⇔ cx

(
1 + k̂1

)
≥ (β − α)

(
α+ βk̂1

1 + k̂1

)1 + cx − α+ (1 + cx − β) k̂1(
1− α+ (1− β) k̂1

)


= (β − α)

(
α+ βk̂1

1 + k̂1

)1 +
cx

(
1 + k̂1

)
(
1− α+ (1− β) k̂1

)


= (β − α) R̂e,1

(
1 +

cx

1− R̂e,1

)
,

where the last line is from R̂e,1
.
= α+βk̂1

1+k̂1
, k̂1

.
=

Ag

Aπ
r̂β−α
1 and r̂1

.
= ê1

x̂1
.

Let LHS(k̂1)
.
= cx

(
1 + k̂1

)
and RHS(k̂1)

.
= (β − α) R̂e,1

(
1 + cx

1−R̂e,1

)
.

lim
k̂1→+∞

RHS(k̂1) = (β − α)β

(
1 +

cx
1− β

)
< lim

k̂1→+∞
LHS(k̂1)

lim
k̂1→0

RHS(k̂1) = (β − α)α

(
1 +

cx
1− α

)
< cx = lim

k̂1→0
LHS(k̂1),
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where the last line is because (β − α)α < cx

(
1− (β−α)α

1−α

)
from condition (25).

From the above two inequalities and LHS(k̂1)−RHS(k̂1) increasing in k̂1, LHS(k̂1)−RHS(k̂1) >

0, ∀k̂1 ∈ (0,+∞) and hence equation (77) always holds given r̂1 ≥ νcx
ce

.

Step 3: Show condition (26) sufficient for r̂1 ≥ νcx
ce

.

Let G(r) denote the function where the left-hand-side minus the right-hand side of (71) with

Ãg = Ag. Because the left-hand side of (71) increases in r and its right-hand side decreases in r,

G(r) increases in r. Also,b ecause r̂1 solves G(r) = 0, r̂1 ≥ νcx
ce

is equivalent to G
(
νcx
ce

)
< 0, i.e.,

ln


(
(1− α)Aπ + (1− β)Ag

(
νcx
ce

)β−α
)(

Aπ

(
νcx
ce

)α
+Ag

(
νcx
ce

)β)
cx

(
Aπ +Ag

(
νcx
ce

)β−α
)

 ,

≤

(
(1− α)Aπ + (1− β)Ag

(
νcx
ce

)β−α
)

(
Aπ +Ag

(
νcx
ce

)β−α
) +

αAπ + βAg

(
νcx
ce

)β−α(
Aπ +Ag

(
νcx
ce

)β−α
) νcx
ce

νcx
ce

.

Rearranging the inequality above,

ln


(
(1− α)Aπ

(
νcx
ce

)α
+ (1− β)Ag

(
νcx
ce

)β)
cx

 ≤
(
Aπ +Ag

(
νcx
ce

)β−α
)

(
Aπ +Ag

(
νcx
ce

)β−α
)

.

It holds under condition (26).

Proof of Proposition 5.

We prove it by contradiction. Suppose the first-best effort pair is restored by µ∗. We first show an

equivalent equation system of equation (20) to characterize µ∗. Take the FOC of the principal’s

best response and plug in the first-best effort levels, we have equation (78) from (15) and (16), and

equation (80) as the transformation of (22) under the first-best efforts.

(
λf + ν

)(
β − (β − α)

1

1 + µt∗

)
= cee

∗(78)

λf

(
(1− β) + (β − α)

1

1 + µt∗
− cxx

∗
)

= ν

(
(1− β) + (β − α)

1

1 + µt∗

)
(79)

λf (π (e∗, x∗) + µg (e∗, x∗))− exp (cxx
∗) = ν exp (cxx

∗) ,(80)

where (e∗, x∗) denote the first-best efforts and λf is the Lagrangian multiplier of the problem (20).

The three-equation system above has two unknowns, µ∗ and λf , and the three equations are
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linearly independent. Hence, µ∗ and λf are over-identified. In general, there does not exist
(
µ∗, λf

)
such that (78), (16) and (80) hold simultaneously.

Proof of Proposition 6.

We first characterize the FOC of w from (28). With FOCs, we simplify the optimization problem

by showing the equivalence between subsidies and reducing the number of choice variables. The

equivalence is proved in two steps. Lastly, we prove by contradiction that the first-best cannot be

restored.

Step 1: FOC characterization. FOC of (28) with regard to w is

ν

Ỹs (e, x) + τe,ππ (e, x) + τe,gg (e, x)− w
=

λ

w + τx,ππ (e, x) + τx,gg (e, x)
(81)

⇒ w =
λ
[
Ỹs (e, x) + τe,ππ (e, x) + τe,gg (e, x)

]
(ν + λ)

− ν

(ν + λ)
[τx,ππ (e, x) + τx,gg (e, x)] .

Step 2: Simplify the choice space of the social planner.

For any arbitrary (e, x), suppose (µ, τe,π, τe,g, τx,π, τx,g) implements (e, x), where τe,π > 0. Be-

cause the terms of τe,π and τe,g in the FOC of (28) with regard to e are perfect substitutes, τ̃p,g is a

linear combination of τe,π, τe,g. Hence, there must be another subsidy rate tuple (µ, τ̃p,g, τx,π, τx,g),

where all subsidy given to the principal is imposed on the knowledge spillovers value implements

(e, x).

Similarly, the equivalence of τx,π, τx,g. Therefore the optimization problem is reduced to the

following form,

max
(µ,τe,g ,τx,g)

{[
ν ln

(
ν

ν + 1
Ỹ (ėx)

)
+ ln

(
Ỹ (ėx)

ν + 1

)]
−ceė− cxx} ,

s.t. ė = argmax
e,w

{
ν ln

(
Ỹs + τe,gg (e, x)− w

)
− cee

}
(82)

cxx = ln (w + τx,gg (e, x)) ,∀e,

Ỹs
.
=Aπe

αx(1−α) + µAge
βx(1−β),

Correspondingly, the optimal transfer from the principal to the agent is

w =
λ

(ν + λ)

[
Ỹs (e, x) + τe,gg (e, x)

]
− ν

(ν + λ)
τx,gg (e, x) .

From the expression above, the subsidy µ given to the startup is a perfect substitute to τe,g given

to the principal. They are both defined as a portion of knowledge value. The income share of the

startup subsidy going to the principal adds to the principal’s individual subsidy to her total income,

according to the principal’s income and utility represented in (82).
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For any arbitrary (e, x), suppose (µ, τe,g, τx,g) implements (e, x), where µ > 0, there must be

another subsidy rate tuple (τ̃p,g, τ̃a,g), where all subsidy given to the principal is imposed on the

knowledge spillovers value.

From the result above, the social planner’s optimization is further simplified as follows

max
(τe,g ,τx,g)

{[
ν ln

(
ν

ν + 1
Ỹ (ėx)

)
+ ln

(
Ỹ (ėx)

ν + 1

)]
−ceė− cxx}(83)

s.t. ė = argmax
e,w
{ν ln (π (e, x) + τe,gg (e, x)− w)− cee}(84)

cxx = ln (w + τx,gg (e, x)) ,∀e,

Step 3: Prove that the first-best cannot be restored by contradiction.

Given the social planner’s problem (83), simplify condition (81),

w =
λ

ν + λ
[π (e∗x∗) + τe,gg (e

∗x∗)]− ν

ν + λ
τx,gg (e

∗x∗)

=
λπ (e∗x∗)

ν + λ
+

(λτe,g − ντx,g) g (e
∗x∗)

ν + λ
,

where λ is the Lagrangian multiplier.

The Lagrangian is

L =ν ln

(
ν

ν + λ
π (e, x) +

ν

ν + λ
(τe,g + τx,g) g (e, x)

)
− cee

+ λ

[
ln

(
λπ (e∗x∗)

ν + λ
+

λ (τe,g + τx,g) g (e
∗x∗)

ν + λ

)
− cxx

]
.

Taking the derivative of the principal’s best response and plugging in the first-best efforts into the

constraints,

(ν + λ)

[
β − (β − α)

∑
s

qs
1 + (τe,g + τx,g) t∗

]
= cee

∗

λ

(
(1− β) + (β − α)

∑
s

qs
1 + (τe,g + τx,g) t∗

− cxx
∗

)
= ν

(
(1− β) + (β − α)

1

1 + µt∗

)
λ ((π (e∗x∗) + (τe,g + τx,g) g (e

∗x∗))− exp (cxx
∗)) =ν exp (cxx

∗) .

The individual subsidy rate τe,g and τx,g are perfect substitutes, and hence their sum is a

sufficient statistic denoted as τ
.
= (τe,g + τx,g) solving the planner’s problem. The equations are

reduced into two unknowns, τ and λ, and represented as three linearly independent equations.

Hence, there does not exist λ > 0 and τ > 0 to solve the equations simultaneously.
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Proof of Proposition 7-(a).

We first prove parts (ii) and (iii), then move to part (i).

Step 1: Equilibrium characterization

Similar to Lemma 4, the Lagrangian is

L = V (Y − w)− cee+ λ [U (w)− cxx− u] .

The equilibrium, (ŵ1(u), ê1(u), x̂1(u)), is characterized by FOCs:

ceê1(u)

λ̂1(u) + ν
= α+ (β − α)

t̂1(u)

1 + t̂1(u)
(85)

λ̂1cxx̂1(u)

λ̂1 + ν
= (1− α)− (β − α)

t̂1(u)

1 + t̂1(u)
(86)

ŵ1 =
λ̂1(u)

ν + λ̂1(u)
Ŷ1(u)(87)

ln

(
λ̂1(u)

ν + λ̂1(u)
Ŷ1(u)

)
= cxx̂1(u) + u,(88)

where λ̂1(u) denote the Lagrangian multiplier at optimum, t̂1(u)
.
=

Ag

Aπ

(
ê1(u)
x̂1(u)

)(β−α)
, and Y (e, x) =

Aπe
αx(1−α) +Age

βx(1−β).

Step 2: Prove λ̂1(u)

λ̂1(u)+ν
< 1

1+ν by contradiction

The first-best equity share is 1
1+ν and the equilibrium equity share is λ̂1(u)

λ̂1(u)+ν
from equation

(88). It means that the equilibrium equity share is below the first best, if and only if λ̂1(u) < 1.

We prove λ̂1(u) < 1 by contradiction.

From the uniqueness of optimum, λ̂1(u) ̸= 1.

Suppose λ̂1(u) > 1. Let F (e;x, λ)
.
= cee

λ+ν −
[
α+ (β − α) t

1+t

]
, where t

.
=

Ag

Aπ

(
x
e

)(1−β)−(1−α)
.

F (e;x, λ) decreases in e regardless of the value of λ.

Because the right-hand side of equation (78) is the same as that of equation (4) and F (e;x, λ)

decreases in e,

λ̂1(u) > 1⇒ ê1 > e∗

Similarly, comparing (86) and (5),

λ̂1(u) > 1⇒ x̂1 < x∗

Construct a hypothetical equity share ϵ̃, such that

U (ϵ̃(u)Y ∗) = cxx
∗ + u where Y ∗ .

= Y (e∗, x∗).
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Let ϵ̂1(u)
.
= λ̂1(u)

λ̂1(u)+ν
. Now the allocation (ϵ̃(u)Y ∗, e∗, x∗) is feasible for the principal’s problem.

From the optimality of the principal’s problem at (ŵ1(u), ê1(u), x̂1(u)), the principal obtains a

larger net utility from allocation (ŵ1(u), ê1(u), x̂1(u)) than (ϵ̃(u)Y ∗, e∗, x∗), i.e.,

V ((1− ϵ̃(u))Y ∗))− cee
∗ < V

(
(1− ϵ̂1(u)) Ŷ1(u)

)
− ceê1(u)

(1− ϵ̃(u))Y ∗ < (1− ϵ̂1(u)) Ŷ1(u)

(1− ϵ̃(u))

(1− ϵ̂1(u))
<

Ŷ1(u)

Y ∗ ,

where, the second inequality is because ê1(u) > e∗(u).

Because x̂1(u) < x∗(u) and the agent’s net utility is (u) at both allocations,

U ((ϵ̃(u))Y ∗))− cxx
∗ = U

(
(ϵ̂1(u)) Ŷ1(u)

)
− cxx̂1(u)

U ((ϵ̃(u))Y ∗)) > U
(
(ϵ̂1(u)) Ŷ1(u)

)
ϵ̃(u)Y ∗ > ϵ̂1(u)Ŷ1(u)

ϵ̃(u)

ϵ̂1(u)
>

Ŷ1(u)

Y ∗ .

Combining the two inequalities,

ϵ̃(u)

ϵ̂1(u)
>

1− ϵ̃(u)

1− ϵ̂1(u)
⇒ ϵ̂1(u) < ϵ̃(u).(89)

From the construction of ϵ̃,

U (ϵ̃(u)Y ∗)− cxx
∗ = 0,

U

(
1

1 + ν
Y ∗
)
− cxx

∗ > 0,

⇒ ϵ̃(u) <
1

1 + ν
.(90)

Combining (90) and (89), we have ϵ̂1(u) <
1

1+ν , contradicting λ̂1(u) > 1. Hence, λ̂1(u)

λ̂1(u)+ν
< 1

1+ν .

Step 3: Prove that ê1(u) < e∗ and x̂1(u) > x∗.

Rearrange the FOC (85) and (86), and let t
.
=

Ag

Aπ
r(β−α) for the equilibrium input ratio r̂1(u)

and the first-best input ratio r∗. Then

ce

cxλ̂1(u)
=

α+ (β − α) t̂1(u)

1+t̂1(u)

r̂1(u)
[
(1− α)− (β − α) t̂1(u)

1+t̂1(u)

](91)

ce
cx

=
α+ (β − α) r∗

1+r∗

r∗
[
(1− α)− (β − α) r∗

1+r∗

] .(92)

59



Therefore,

λ̂1(u) < 1

⇔
α+ (β − α) t̂1(u)

1+t̂1(u)

r̂1(u)
[
(1− α)− (β − α) t̂1(u)

1+t̂1(u)

] >
α+ (β − α) r∗

1+r∗

r∗
[
(1− α)− (β − α) r∗

1+r∗

]
⇔ r̂1(u) < r∗,

where the first inequality is from (91) and (92). The second inequality is because the ratio R(r) .
=

α+(β−α) r
1+r

r[(1−α)−(β−α) r
1+r ]

decreases in r, i.e.,R′(r) < 0.

Compare the right-hand side of e’s FOC in equilibrium and under the first-best,

α+ (β − α)
t̂1(u)

1 + t̂1(u)
< α+ (β − α)

r∗

1 + r∗

⇔ ceê1(u)

λ̂1(u) + ν
<

cee
∗

1 + ν

⇒ ê1(u) < e∗,

where first inequality is from r̂1(u) < r∗, the second is from FOCs (85) and (4), and the third

inequality is from λ̂1(u) < 1. Similarly,

(1− α)− (β − α)
t̂1(u)

1 + t̂1(u)
> (1− α)− (β − α)

r∗

1 + r∗

⇔ λ̂1(u)cx

λ̂1(u) + ν
x̂1(u) <

cxx
∗

1 + ν

⇒ ê1(u) > e∗

The first inequality is from r̂1(u) < r∗, the second is from FOCs (86) and (5), and the third

inequality from λ̂1(u) < 1.

The analyses above complete the proof of part (b). To see part (a), that FOC characterization

shown in the first step still holds under u = u∗x. Combine the condition u = u∗x with the FOCs and

the agent’s utility determination (88), λ̂1(u
∗
x) = 1.

Plugging λ̂1(u
∗
x) = 1 into FOCs (87), (91), and (92), we have ê1(u

∗
x) = e∗, x̂1(u

∗
x) = x∗, and

ŵ1(u
∗
x) = w∗.

Proof of Proposition 7-(b).

Let r̂1(u)
.
= ê1(u)

x̂1(u)
denote the ratio of effort pair (ê1, x̂1) in the Pigouvian subsidy equilibrium where

the agent’s outside option value is u. According to the proof of Proposition 7-(a), equation (85),

(86), and (88) characterize equilibrium effort pair (ê1, x̂1). We transform these equations into the
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following equation with r̂1(u) as the only variable, i.e.,

u

α+ (β − α) t̂1(r̂1)

1+t̂1(r̂1)

=
Aπ r̂1(u)

α +Ag r̂1(u)
β

cx
− 1− νcx

r̂1(u)ce

(
α+ βt̂1(r̂1)

β + αt̂1(r̂1)

)
,(93)

where t̂1(r̂1)
.
=

Ag

Aπ
(r̂1(u))

β−α.

We treat r̂1(u) as the only unknown and u as its parameter for equation (93). We first show how

r̂1(u) changes with regard to u. Second, we represent ê1(u) and x̂1(u) from equation (85) and (86).

Third step is the comparative statics of ê1(u) and x̂1(u) with regard to u. Note that the first-best

effort level e∗ and x∗ can be represented as e∗
.
= ê1(u

∗) and x∗
.
= x̂1(u

∗), where the equilibrium we

analyze here is u < u∗. Thus, comparing ê
′
1(u) and x̂

′
1(u) to their counterpart with agent’s utility

at the first-best level yields the comparative statics of effort distortion with regard to u.

Let L(r̂1;u)
.
= u

α+(β−α)
t̂1(r̂1)

1+t̂1(r̂1)

and R(r̂1;u)
.
=

Aπ r̂1(u)α+Ag r̂1(u)β

cx
− 1− νcx

r̂1(u)ce

(
α+βt̂1(r̂1)

β+αt̂1(r̂1)

)
denote

the left-hand side and right-hand side of equation (93). To demonstrate their monotonicity, we take

first-order derivative of lnL(r̂1;u) and R(r̂1;u),

d (lnL(r̂1;u))

dr̂1
=
d
(
α+ (β − α) t̂1(r̂1)

1+t̂1(r̂1)

)
dr̂1

(
−
(
α+ (β − α)

t̂1(r̂1)

1 + t̂1(r̂1)

)−2
)

∝−
d
(
α+ (β − α) t̂1(r̂1)

1+t̂1(r̂1)

)
dr̂1

∝−
d
(

t̂1(r̂1)

1+t̂1(r̂1)

)
dr̂1

∝
d
(
t̂1(r̂1)

)
dr̂1

=
Ag

Aπ
(β − α) (r̂1(u))

β−α−1 > 0

⇒ dL(r̂1;u)

dr̂1
> 0
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d (R(r̂1;u))

dr̂1
=
d
(
Aπ r̂1(u)α+Ag r̂1(u)β

cx

)
dr̂1

+
νcx

r̂21(u)ce

(
α+ βt̂1(r̂1)

β + αt̂1(r̂1)

)

− νcx
r̂1(u)ce

d
(
α+βt̂1(r̂1)

β+αt̂1(r̂1)

)
dr̂1

>
νcx

r̂21(u)ce

(
α+ βt̂1(r̂1)

β + αt̂1(r̂1)

)
− νcx

r̂1(u)ce

d
(
α+βt̂1(r̂1)

β+αt̂1(r̂1)

)
dr̂1

∝ 1

r̂1(u)

(
α+ βt̂1(r̂1)

β + αt̂1(r̂1)

)
−

d
(
α+βt̂1(r̂1)

β+αt̂1(r̂1)

)
dr̂1

∝ 1

r̂1(u)

(
α+ βt̂1(r̂1)

β + αt̂1(r̂1)

)
−

d

(
−β2

α
+α

β+αt̂1(r̂1)

)
dr̂1

=
1

r̂1(u)

(
α+ βt̂1(r̂1)

β + αt̂1(r̂1)

)
+

d

(
β2

α
−α

β+αt̂1(r̂1)

)
dr̂1

=
1

r̂1(u)

(
α+ βt̂1(r̂1)

β + αt̂1(r̂1)

)
− β2 − α2(

β + αt̂1(r̂1)
)2 d

(
t̂1(r̂1)

)
dr̂1

∝α+ βt̂1(r̂1)

r̂1(u)
− β2 − α2

β + αt̂1(r̂1)

d
(
t̂1(r̂1)

)
dr̂1

∝
(
α+ βt̂1(r̂1)

)
− β2 − α2

β + αt̂1(r̂1)

(
Ag (β − α) (r̂1(u))

β−α

Aπ

)
∝
(
α2 + β2

)
t̂1(r̂1) + αβ

(
1 + t̂1(r̂1)

)
−
(
β2 − α2

)
t̂1(r̂1)

=2α2t̂1(r̂1) + αβ
(
1 + t̂1(r̂1)

)
> 0,

where t̂1(r̂1)
.
=

Ag

Aπ
(r̂1(u))

β−α.

Thus, both L(r̂1;u) and R(r̂1;u) monotonically increases in r̂1 ∈ ℜ+ and hence for any given u,

the solution r̂1( u←−) is unique. Below shows that for any r < r̂1, L(r) > R(r) and vice versa.

lim
r→0

L(r) =
u

β
> lim

r→0
R(r) = −∞

lim
r→+∞

L(r) =
u

α
< lim

r→∞
R(r) = +∞

Therefore, LHS(r) − RHS(r) monotonically decreases in r̂1, i.e.,
d(LHS(r)−RHS(r))

dr < 0. For
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dr̂1(u)
du ,

d (LHS(r)−RHS(r))

du
=

1

α+ (β − α) t̂1(r̂1)

1+t̂1(r̂1)

> 0

⇒ dr̂1(u)

du
= −

d(LHS(r)−RHS(r))
du

d(LHS(r)−RHS(r))
dr

> 0.

From equation (85) and (86), the equilibrium efforts pairs, (ê1, x̂1), can be expressed as

x̂1 =
1

cx

(
α+

β − α

1 + t̂1(r̂1)

)(
1 +

νcx
(
α+ βt̂1(r̂1)

)
cer̂1

(
β + αt̂1(r̂1)

))

ê1 =
1

ce

(
β +

α− β

1 + t̂1(r̂1)

)(
ν +

cer̂1
(
β + αt̂1(r̂1)

)
cx
(
α+ βt̂1(r̂1)

) ) ,

where t̂1(r̂1)
.
=

Ag

Aπ
(r̂1(u))

β−α.

Take the first-order derivative of x̂1 with regard to r̂1,

∂x̂1
∂r̂1
∝t̂′1 (r̂1)

−(β − α)

(
1 +

νcx(α+βt̂1(r̂1))
cer̂1(β+αt̂1(r̂1))

)
(
1 + t̂1 (r̂1)

)2 +

(
α+

β − α

1 + t̂1 (r̂1)

)
νcx
cer̂1

β2

α − α(
β + αt̂1(r̂1)

)2


−
(
α+

β − α

1 + t̂1(r̂1)

)
νcx

(
α+ βt̂1(r̂1)

)
cer̂21

(
β + αt̂1(r̂1)

)
∝t̂′1 (r̂1)

− (β − α)
(
β + αt̂1

)
cer̂1 + νcx

(
α+ βt̂1 (r̂1)

)(
1 + t̂1 (r̂1)

) +

(
β + αt̂1 (r̂1)

)
νcx

(
β2

α − α
)

(
β + αt̂1

)


−
νcx

(
α+ βt̂1(r̂1)

) (
β + αt̂1 (r̂1)

)
r̂1

=t̂
′
1 (r̂1)

− (β − α)
(
β + αt̂1 (r̂1)

)
cer̂1 + νcx

(
βt̂1 − β2

α + α− t̂1
β2

α

)
(
1 + t̂1 (r̂1)

)
− νcx

(
α+ βt̂1(r̂1)

) (
β + αt̂1 (r̂1)

)
r̂1

∝t̂′1 (r̂1)

[
− (β − α)

(
β + αt̂1 (r̂1)

)
cer̂1 +

νcx
α (α− β)

(
βt̂1 + β + α

)(
1 + t̂1 (r̂1)

) ]
−

νcx
(
α+ βt̂1(r̂1)

) (
β + αt̂1 (r̂1)

)
r̂1

<0,

where t̂1(r̂1)
.
=

Ag

Aπ
(r̂1(u))

β−α and the last inequality is due to t̂
′
1 (r̂1) =

Ag

Aπ
(β − α) (r̂1(u))

β−α−1 >

0.

Combining ∂x̂1
∂r̂1

< 0 with dr̂1(u)
du > 0,

(94)
∂x̂1(r̂1(u))

∂u
< 0
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Similarly,


∂ê1(r̂1)
∂r̂1

> 0

dr̂1(u)
du > 0

and hence

(95)
∂ê1(r̂1(u))

∂u
> 0.

From Proposition (7)-(a), ê1(u) < e∗ and x̂1(u) > x∗.

Together from the regularity assumption u < u∗, the distortion’s dependence on u is

∂ (e∗ − ê1(u))

∂u
=

∂ (e∗ − ê1(u))

∂u
= −∂ê1(r̂1(u))

∂u
< 0

∂ (x̂1(u)− x∗)

∂u
=

∂ (x̂1(u)− x∗)

∂u
=

∂x̂1(r̂1(u))

∂u
< 0,

where the equality is from Proposition (7-(a)) and the inequalities are from (94) and (95).

Proof of Proposition 8-(a).

We prove ě1 > ě0 by contradiction. Suppose ě1 ≤ ě0. FOCs of laissez-faire equilibrium are

λ̌0ce

λ̌0 + ν
=

α

ě0
(96)

cx

λ̌0 + ν
=

(1− α)

x̌0
,

Let ϵ
.
= λ

λ+ν . Rearrange FOC and combine with the participation constraint (29), the laissez-

faire equilibrium is characterized by,

λ̌0ce
cx

=

(
α

(1− α)

)
x̌0
ě0

(97)

α

ϵ̌0
= ln

(
Aπα

ce

)
+ (1− α) ln

(
ce(1− α)

cxα

)
.(98)

Similarly, FOCs of the market equilibrium under the Pigouvian subsidy are,

λ̌1ce

λ̌1 + ν
=

1

ě1

α+ (β − α)

Ag

Aπ

(
êb,1
x̂b,1

)(β−α)

1 +
Ag

Aπ

(
êb,1
x̂b,1

)(β−α)

(99)

cx

λ̌1 + ν
=

1

x̌1

(1− α) + ((1− β)− (1− α))

Ag

Aπ

(
êb,1
x̂b,1

)(β−α)

1 +
Ag

Aπ

(
êb,1
x̂b,1

)(β−α)

 ,
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Let ř1
.
= x̌1

ě1
and ϵ

.
= λ

λ+ν . The equilibrium is characterized by,

1− f (ř1)

ϵ̌1
= ln

(
Aπ (1− f (ř1))

ce

)
+ (1− α) ln (ř1) + ln

(
1 +

Ag

Aπ
ř
(1−β)−(1−α)
1

)
(100)

ř1 =
λ̌1ce
cx

f (ř1)

1− f (ř1)
,(101)

where f (ř1)
.
= (1− α) + ((1− β)− (1− α))

Ag
Aπ

(
êb,1

x̂b,1

)(β−α)

1+
Ag
Aπ

(
êb,1

x̂b,1

)(β−α) .

Because (1− β) < (1− α) from the definition of production functions, for any r
.
=

ep
ea
,

(102) 1− f (r)
.
= α− ((1− β)− (1− α))

Ag

Aπ
r(1−β)−(1−α)

1 +
Ag

Aπ
r(1−β)−(1−α)

> α.

Let ϵ
.
= λ

λ+ν . If ě1 ≤ ě0,

1− f (ř1)

ϵ̌1
= ê1 < ê0 =

α

ϵ̌0
,

⇒ ϵ̌1 > ϵ̌0,

⇒ λ̌1 > λ̌0,(103)

where the first and the last equality arise from equation (99) and (96). The second inequality is

from (102) and the last inequality is from ϵ
.
= λ

λ+ν .

From (98) and (100),

ln
(
Aπ ř

(1−α)
0

)
+ ln

(
α

ce

)
= ceě0,

> ceě1,

= ln
(
Aπ ř1

(1−α) +Ag ř1
(1−β)

)
+ ln

(
1− f (ř1)

ce

)
,

≥ ln
(
Aπ ř

(1−α)
1 +Ag ř

(1−β)
1

)
+ ln

(
α

ce

)
,

> ln
(
Aπ ř

(1−α)
1

)
+ ln

(
α

ce

)
,

⇒ ř1 <ř0,(104)

where the first inequality is from ě1 ≤ ě0 and the second is from (102). The equations are from the

rearrangement of participation constraints (98) and (100).
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Compare equation (97) and (101), if ě1 ≤ ě0,

1

ř1
=
λ̌1ce
cx

f (ř1)

(1− f (ř1))
,

≥ f (ř1)

1− f (ř1)

λ̌0ce
cx

,

>
(1− α)

α

λ̌0ce
cx

,

=
1

ř0

⇒ ř1 <ř0,(105)

where the first inequality is from λ̌1 > λ̌0 in (103) and the second is from (102).

Because (104) contradicts (105), ě1 > ě0.

Proof of Proposition 8-(b).

The proof consists of three steps. First, we construct a hypothetical equilibrium allocation. Let ϵ̃b

and ϵ̌0 denote the equilibrium equity share in the hypothetical equilibrium and in laissez-faire. We

first show ϵ̃b < ϵ̌0. Second, let ϵ̌1 denote the agent’s equilibrium equity share under the Pigouvian

subsidy. We show ϵ̌1 < ϵ̃b and hence ϵ̌1 < ϵ̌0. At last, we show x̌1 < x̌0.

Step 1 Let (ϵ̃b, r̃b) solves the following equation system

cx
ce
rb =

(1− β)λ

β
(106)

ϵ
.
=

λ

λ+ ν
,

ln

(
β

ce

(
Aπr

(1−α)
b +Agr

(1−β)
b

))
=

β

ϵ
.(107)

For the laissez-faire equilibrium, define the agent’s equity share and the effort ratio by ϵ̌0
.
= λ̌0

λ̌0+ν

and ř0
.
= x̌0

ě0
. Let rb

.
= x

e for each scenario.

Below we prove that ϵ̃b < ϵ̌0,given Aπ ≥ ce.

From FOC characterization, (ϵ̌0, r̂b) as the solution of the following equation system.

cx
ce
rb =

(1− α)λ

α
,(108)

ln

(
α

ce
Aπr

(1−α)
b

)
=

α

ϵ
.(109)

Then we define F (r) and F̃ (r) from equation (106) and (108), and G(r) and G̃(r) from equation
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(107) and (109), respectively.

F (r)
.
=
(1− α)

αrb

ce
cx

+ 1(110)

F̃ (r)
.
=
(1− β)

βrb

ce
cx

+ 1,

G(r)
.
=
1

α
ln

(
α

ce
Aπr

(1−α)
b

)
,

G̃(r)
.
=
1

β
ln

(
β

ce

(
Aπr

(1−α)
b +Agr

(1−β)
b

))
,

Thus, r̂ is the solution of F (r) = G(r), and r̃b is the solution of F̃ (r) = G̃(r), i.e., 1
ϵ̃b

= F̃ (r̃b) =

G̃(r̃b). Define rb,g and rb,f as the solution of G(rb,g) =
1
ϵ̃b

and F (rb,f ) =
1
ϵ̃b
.

(i) To show rb,f < rb,g ⇒ ϵ̃b < ϵ̌0.

Proof of the claim above. Take derivatives of F (r), F̃ (r), G(r) and G̃(r),

F ′(r) < 0, F̃ ′(r) < 0

G′(r) > 0, G̃′(r) > 0

d (F (r)−G(r))

dr
< 0.

Because rb,f < rb,g, G(rb,f ) < G(rb,g) =
1
ϵ̃b

and F (rb,g) < F (rb,f ) =
1
ϵ̃b
. Thus,

F (rb,g)−G(rb,g) < 0

F (rb,f )−G(rb,f ) > 0.

From definition of F (r) and G(r), F (r̂)−G(r̂) = 0.

Hence,

F (rb,g)−G(rb,g) < F (r̂)−G(r̂) < F (rb,f )−G(rb,f )

⇒ rb,f < ř0 < rb,g.

Because F (rb,f ) =
1
ϵ̃b
, F (r̂) = 1

ϵ̌0
and F ′(r) < 0,

1

ϵ̌0
<

1

ϵ̃b
⇒ ϵ̌0 > ϵ̃b.

(ii) To show that given Aπ ≥ ce, rb,f < rb,g.

From definition F (rb,f ) =
1
ϵ̃b
,

(111) r̃b = rb,f
(1− α)

α

β

(1− β)
.
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Plug rb,f in G̃(r),

G(rb,f ) =
1

α
ln

(
α

ce
Aπ

)
+

(1− α)

α
ln rb,f

=
1

α
ln

(
α

ce
Aπ

)
+

(1− α)

α

(
ln

(
α

1− α

1− β

β

)
+ ln r̃b

)
<

1

α
ln

(
α

ce
Aπ

)
+

(1− α)

α
ln r̃b

=
1− β

(1− α)β
ln

(
α

ce
Aπ

)
+

(1− β)

β
ln r̃b

<
1

β
ln

(
Aπ

ce

)
+

1− β

(1− α)β
lnα+

(1− β)

β
ln r̃b

<
1

β
ln

(
Aπ

ce

)
+

1

β
lnα+

(1− β)

β
ln r̃b

<
1

β
ln

(
Aπ

ce

)
+

1

β
lnβ +

(1− β)

β
ln r̃b

<
1

β
ln

(
β

ce
Aπ

)
+

(1− β)

β
ln r̃b +

ln
(
1 +

Ag

Aπ
r̃
(β−α)
b

)
β

= G̃ (r̃b) = G(rb,g).

The first inequality is from α < β and its resulting 1 − β > 1 − α; the second equation is from

multiplying the previous line with α(1−β)
β(1−α) ; the second inequality stems from Aπ ≥ ce and 1−β

1−α < 1;

the third inequality is from 1−β
1−α < 1; the fourth inequality is from lnβ > lnα. The last two

equations are from the definition of r̃b and rb,g.

Combine G(rb,f ) < G(rb,g) and G′(r) > 0, rb,f < rb,g. Combine with the previous step, ϵ̃b < ϵ̌0.

Step 2. Prove that ϵ̃b > ϵ̌1, where ϵ̃b denotes the solution of equation (107) and (106). Let

ϵ̌1
.
= λ̌1

λ̌1+ν
.

We prove ϵ̃b > ϵ̌1 by contradiction. Suppose ϵ̃b ≤ ϵ̌1. From the construction of hypothetical

equilibrium (ϵ̃b, r̃b, ẽb) and FOC of x̌1 in equation (99),

ϵ̃bceẽb = β > α+ (β − α)
ť1

1 + ť1
= ϵ̌1ceě1,(112)

where the inequality is from ť1
.
=

Ag

Aπ

(
êb,1
x̂b,1

)(1−β)−(1−α)
> 0.

Combine (112) with ϵ̃b ≤ ϵ̌1,

(113) ẽb > ě1

From ϵ
.
= λ

λ+ν , λ̃b ≤ λ̌1.
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From equation (99) and equation (107),

cxř1

ceλ̌1

=
(1− α)− (β − α) ť1

1+ť1

α+ (β − α) ť1
1+ť1

>
(1− β)

β

=
cxr̃b

ceλ̃b

⇒ ř1
r̃b

>
λ̌1

λ̃b

≥ 1

⇒ ř1 >r̃b

Combine ϵ̃b ≤ ϵ̌1 and ř1 > r̃b,

ceě1 − ln ě1 = ln (ϵ̌1) + ln
(
Aπ (ř1)

(1−α) +Ag (ř1)
(1−β)

)
> ln (ϵ̃b) + ln

(
Aπ (r̃b)

(1−α) +Ag (r̃b)
(1−β)

)
=ceẽb − ln ẽb

From regularity assumptions, in equilibrium cee−ln e increases in e such that the effort provision

increases in her wage as derived from the participation constraint. Therefore, ceě1 − ln ě1 > ceẽb −
ln ẽb implies ě1 > ẽb. This contradicts equation (113).

These two steps imply ϵ̌0 > ϵ̃b > ϵ̌1. Then ϵ̌0 > ϵ̌1 ⇒ λ̌0 > λ̌1. From equations (96) and (99),

cxx̌0 =(1− α)
(
λ̌0 + ν

)
<

(
(1− α)− (β − α)

ť1
1 + ť1

)(
λ̌0 + ν

)
<

(
(1− α)− (β − α)

ť1
1 + ť1

)(
λ̌1 + ν

)
= cxx̌1

where the first inequality arises from (1 − α) > (1 − β) and ť1
.
=

Ag

Aπ

(
êb,1
x̂b,1

)(β−α)
> 0. Hence,

x̌0 < x̌1.

Proof of Proposition 8-(c).

Let ř0
.
= x̌0

ě0
. From the characterization of laissez-faire equilibrium in (97) and (98),

ln

(
λ̌0ě0

λ̌0 + ν

)
+ ln

(
Aπ ř

1−α
0

)
= ceě0

λ̌0ě0ce

λ̌0 + ν
= α
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Combine the two equations, equilibrium ř0 uniquely solves the following equation

(114) F0(ř0)
.
= ln

(
αAπ

ce

)
+ (1− α) ln ř0 − α− ν (1− α) ce

cxř0
= 0

From the characterization of equilibrium (ě1, x̌1) and let ř1
.
= x̌1

ě1
,

ln

(
λ̌0ě0

λ̌0 + ν

)
+ ln

(
Aπ ř

1−α
0 +Ag ř

1−β
0

)
= ceě0,

λ̌1ě1ce

λ̌1 + ν
= Re (ř1) ,

Re (ř1)
.
=

α+ β
Ag

A]π
řα−β
1

1 +
Ag

A]π
řα−β
1

(115)

The equation uniquely characterizing ř1 is thus given by

F1(ř1)
.
= ln

(
Re(ř1)Aπ

ce

)
+ (1−Re(ř1)) ln ř1 + ln

(
1 +

Ag

Aπ
řα−β
1

)
−Re(ř1)−

ν (1−Re(ř1)) ce
cxř0

= 0

where Re (ř1) is given in equation (115). Note that F ′
1(r) > 0.

From FOC characterizations in laissez-faire equilibrium and equilibrium under the Pigouvian

subsidy,

cxř0
ce

=
1− α

α
λ̌0

cxř1
ce

=
1−Re (ř1)

Re (ř1)
λ̌1

where Re (ř1) is given in equation (115). The above equations imply

λ̌0 > λ̌1 ⇔ ř0

(
α (1− β)

β (1− α)

)
> ř1.(116)

Because F1(z) increases in z and F1(ř1) = 0, inequality (116) is equivalent to

F1

(
ř0

(
α (1− β)

β (1− α)

))
> 0.

Let R̃e
.
= Re

(
ř0

(
α(1−β)
β(1−α)

))
and r̈

.
= ř0

(
α(1−β)
β(1−α)

)
. Because lnRe − Re increases in Re ∈ (0, 1)

and R̃e ∈ (α, β),
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F1

(
ř0

(
α (1− β)

β (1− α)

))
= ln

(
AπR̃e

ce

)
− R̃e −

ν
(
1− R̃e

)
ce

cxř0

(
α(1−β)
β(1−α)

) ,
+ (1− α) ln

(
ř0

(
α (1− β)

β (1− α)

))
+ ln

(
1 +

Ag

Aπ
r̈α−β

)
,

> ln

(
αAπ

ce

)
− α−

ν
(
1− R̃e

)
ce

cxř0

(
α(1−β)
β(1−α)

) ,
+ (1− α) ln

(
ř0

(
α (1− β)

β (1− α)

))
+ ln

(
1 +

Ag

Aπ
r̈α−β

)
,

> ln

(
αAπ

ce

)
− α− ν (1− α) ce

cxř0

(
α(1−β)
β(1−α)

) ,
+ (1− α) ln

(
ř0

(
α (1− β)

β (1− α)

))
+ ln

(
1 +

Ag

Aπ
r̈α−β

)
,

=− (1− α) ln ř0 +
ν (1− α) ce

cxř0

(
1− β (1− α)

α (1− β)

)
,

+ (1− α) ln (ř0) + (1− α) ln

(
α (1− β)

β (1− α)

)
+ ln

(
1 +

Ag

Aπ
r̈α−β

)
,

=
ν (1− α) ce

cxř0

(
1− β (1− α)

α (1− β)

)
+ (1− α) ln

(
α (1− β)

β (1− α)

)
+ ln

(
1 +

Ag

Aπ
r̈α−β

)
,

=
ν (1− α) ce

cxř0

(
1− β (1− α)

α (1− β)

)
+ ln

((
α (1− β)

β (1− α)

)1−α

+
Ag

Aπ

(
α (1− β)

β (1− α)

)1−β

řα−β
0

)
,

=

[
ln

(
αAπ

ce

)
+ (1− α) ln ř0 − α

](
1− β (1− α)

α (1− β)

)
,

+ ln

((
α (1− β)

β (1− α)

)1−α

+
Ag

Aπ

(
α (1− β)

β (1− α)

)1−β

řα−β
0

)
,

>

[
ln

(
αAπ

ce

)
+ (1− α) ln ř0 − α

](
1− β (1− α)

α (1− β)

)
+ ln

(
Ag

Aπ

(
α (1− β)

β (1− α)

)1−β

řα−β
0

)
,(117)

≥
[
ln

(
αAπ

ce

)
+ (1− α) ln ř0 − α

](
1− β (1− α)

α (1− β)

)
,

≥0,

where the first inequality is from lnRe − Re increases in Re ∈ (0, 1), the second inequality is

from 1 − R̃e < 1 − α, and the second equation is because (1− α)ln ř0 = α + ν(1−α)ce
cxř0

− ln
(
αAπ
ce

)
transformed from (114). (117) is because α(1−β)

β(1−α)

1−α
> 0 and ln(·) is increasing function. The second

last inequality is because ř0 ≤ 1 derived from inequality (118) and
Ag

Aπ

(
α(1−β)
β(1−α)

)1−β
≥ 1 from the
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second given condition in Proposition 8-c. The final inequality is because β(1−α)
α(1−β) > 1 and

ln

(
αAπ

ce

)
+ (1− α) ln ř0 − α ≤ ln

(
αAπ

ce

)
− α ≤ 0

Plug z = 1 into function F0(z) defined in equation (114),

F0(1) = ln

(
αAπ

ce

)
+ (1− α) ln 1− α− ν (1− α) ce

cx
,

= ln

(
αAπ

ce

)
− α− ν (1− α) ce

cx
< 0,(118)

Because F0(z) increases in z, inequality (118) leads to ř0 < 1 and inequality (118) is from the

given condition ln
(
αAπ
ce

)
≤ α.

Proof of Corollary 4.

Given Proposition 8, λ̌1 < λ̌0 and ě1 < ě0 under the conditions that ln
(
αAπ
ce

)
≤ α, β(1−α)

α(1−β) ≤(
Ag

Aπ

) 1
1−β

, and Aπ ≥ ce. Let ϵ̂1
.
= ŵ1

Ŷ1
and ϵ̂0

.
= ŵ0

π̂0
, then

ϵ̌1 =
λ̌1

λ̌1 + ν
<

λ̌0

λ̌0 + ν
= ϵ̌0.

The social welfare function is

SW (e, x, ϵ) = (1 + ν) lnY + ν ln (1− ϵ) + ln ϵ− ece − xcx.

The first-order derivatives are

SWϵ(ě0, x̌0, ϵ) =
ν

1− ϵ
+

1

ϵ
> 0, ∀ϵ ∈ [ϵ̌1, ϵ̌0]

SWϵϵ(ě0, x̌0, ϵ) ≤ 0, ∀ϵ ∈ [ϵ̌1, ϵ̌0] ,

where inequality is from ϵ̌0 <
1

1+ν . Because ϵ̌1 < ϵ̌0,

(119) SW (ě0, x̌0, ϵ̌1) < SW (ě0, x̌0, ϵ̌0).
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Similarly, let t
.
=

Ag

Aπ

(
e
x

)β−α

SWe(ě0, x̌0, ϵ) =
(1 + ν)

ě0

(
β − β − α

1 + t (ě0, x̌0)

)
− ce

∝ β − β − α

1 + t (ě0, x̌0)
− ceě0

1 + ν

= β − β − α

1 + t (ě0, x̌0)
−

α
(
ν + λ̌0

)
1 + ν

> β − β − α

1 + t (ě0, x̌0)
− α

= (β − α)

(
1− 1

1 + t (ě0, x̌0)

)
> 0,

where the inequality is because λ̌0 < 1.

Then for ∀e ∈ [ě0, ě1],

SWe (e, x̌0, ϵ) ∝ β − β − α

1 +
Ageβ−α

Aπx̌
β−α
0

− cee

1 + ν

≥ β − β − α

1 + t (ě0, x̌0)
− ceě0

1 + ν
> 0

SWee (e, x̌0, ϵ) ≤ 0,

where the last inequality of second-order derivative is from the regularity assumption that social

welfare function is concave at each variable. Therefore, from ě1 < ě0,

(120) SW (ě1, x̌0, ϵ̌1) < SW (ě0, x̌0, ϵ̌1) .

Take the first-order derivative of social welfare function with regard to x,

SWx (ě1, x̌0, ϵ̌1) =
(1 + ν)

x̌1

(
1− β +

β − α

1 + t (ě1, x̌1)

)
− cx

∝ 1− β +
β − α

1 + t (ě1, x̌1)
− cxx̌1

1 + ν

= 1− β +
β − α

1 + t (ě1, x̌1)
−

1− β + β−α
1+t(ě1,x̌1)

(1 + ν) λ̌1

λ̌1+ν

=

(
1− β +

β − α

1 + t (ě1, x̌1)

)(
1−

1 + ν
λ̌1

(1 + ν)

)
< 0,
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where the last inequality is from λ̌1 < 1 and t
.
=

Ag

Aπ

(
e
x

)β−α
. Similarly,

SWx (ě1, x̌0, ϵ̌1) ∝ 1− β +
β − α

1 +
Ag ě

β−α
1

Aπx̌
β−α
0

− cxx̌0
1 + ν

< 1− α− cxx̌0
1 + ν

=
x̌0cxx̌0

λ̌0 + ν
− cxx̌0

1 + ν
< 0.

Also, from the regularity assumption of concave social welfare function, ∀ (e, x, ϵ), SWxx (e, x, ϵ) ≤ 0.

Therefore, for any x in the interval between x̌0 and x̌1,

SWx (ě1, x, ϵ̌1) ≤ sup {SWx (ě1, x̌0, ϵ̌1) , SWx (ě1, x̌1, ϵ̌1)} < 0.(121)

FOC of x̌1 is

cx =
λ̌1(

λ̌1 + ν
)
x̂1

(
1− β +

β − α

1 + t (ě1, x̌1)

)
⇒ x̂1 =

λ̌1(
λ̌1 + ν

)
cx

(
1− β +

β − α

1 + t (ě1, x̌1)

)
>

λ̌1(
λ̌1 + ν

)
cx

(1− α)

>
λ̌0(

λ̌0 + ν
)
cx

(1− α) = x̌1,

where t
.
=

Ag

Aπ

(
e
x

)β−α
and the first inequality is from t (ě1, x̌1) > 0, and the second inequality is

from λ̌1 < λ̌0.

From x̌1 > x̌0 and inequality (121), SW (ě1, x̌1, ϵ̌1) < SW (ě1, x̌0, ϵ̌1). Combine the inequality

above with (119) and (120),

SW (ě1, x̌1, ϵ̌1) < SW (ě1, x̌0, ϵ̌1) < SW (ě0, x̌0, ϵ̌1) < SW (ě0, x̌0, ϵ̌0).

Proof of Proposition 9.

Proposition 9 is a simplified version of Proposition 11. Below we first characterize the equilibrium

of the model with information friction. Then 9 follows immediately after the proof of Proposition

11.
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Extension Model: Information Friction

First-best allocation

Let (w∗
s , w

∗
f ) denote the transfer to the agent given the success state and the failure. The first-best

allocation maximizes the social welfare:

SW (e, x, w∗
s , w

∗
f )

.
= q(e, x) [V (Ys − w∗

s) + U(w∗
s)]−

cee
2

2
+(1− q(e, x))

[
V (Yf − w∗

f ) + U(w∗
f )
]
− cxx.

One can easily solve the first-best allocation, (e∗, x∗, w∗
s , w

∗
f ), as follows:

w∗
s = 1

ν+1Ys and w∗
f = 1

ν+1Yf ,

e∗ = σ
ce

(
cx
1−σ

)1− 1
σ
(
Aq (1 + ν) ln Ys

Yf

) 1
σ
,

x∗ = σ
ce

(
cx
1−σ

)1− 2
σ
(
Aq (1 + ν) ln Ys

Yf

) 2
σ
.

Laissez-faire equilibrium

Below is the characterization of the laissez-faire equilibrium. The principal’s problem is given in

(30). Given the constraint (32) and the IC constraint 31, the ex ante participation constraint is

not binding. Because the agent’s ex post utility is non-negative even at failing state and the IC

ensures the net expected utility is at least as high as the non-hidden-action case to induce efforts,

the agent’s expected utility ex ante is positive, i.e., ex ante participation constraint (33) is not

binding. The IC (31) and (32) under the failing state are binding.

The Lagrangian is

L =E [V (e, ws,0, wf,0)]−
cee

2

2
+ λs ln (ws,0 − u) + λf ln (wf,0 − u)

+ λc (px (e, x) (U (ws,0)− U (wf,0))− cx) ,

where the IC constraint is transformed into its FOC with regard to x.25 We can then derive the

equilibrium:

25This follows the widely-used first-order approach in hidden action contracting literature (Holmström, 1979). In
the Appendix, we verify the validity of the first-order approach in our model.
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Lemma 6. The laissez-faire equilibrium is characterized by

ŵs,0 =
λ̂c,0 (1− ρ)

νx̂0 + λ̂c,0 (1− ρ)
πs, and ŵf,0 = 1(122)

ceê
2
0

ρ
=

λ̂c,0cx (ρν + 1− ρ)

(1− ρ)
,(123)

ρλ̂c,0

x̂0

cx
Ap (1− ρ) r̂ρ0

= ln

(
πs

πf − 1

)
+ ln

(
νx̂0

νx̂0 + λ̂c,0 (1− ρ)

)
,(124)

λ̂c,0 (1− ρ)

νx̂0 + λ̂c,0 (1− ρ)
πs = exp

(
cx

Ap (1− ρ) r̂ρ0

)
,(125)

where r̂0
.
=

ê0
x̂0

,

and λs = 0 and λf > 0, where λs and λf denote the multipliers of constraint (32) under the success

state and failure state and λ̂c,0 denote the Lagrangian multiplier of constraint (31).

The contract in laissez-faire has standard features in the model hazard literature: the IC con-

straint is binding, and the participation constraint is binding at the failure state but not at the

success state.

Pigouvian Subsidy

The Lagrangian is

L =E [V (e, ws,1, wf,1)]−
cee

2

2
+ λs ln (ws,1 − u) + λf ln (wf,1 − u)

+ λc (qx (e, x) (U (ws,1)− U (wf,1))− cx) ,

where the IC is transformed into its first-order condition with regard to x.

Lemma 7. The equilibrium under the Pigouvian subsidy is characterized by

ŵs,1 =
λ̂c,1 (1− σ)

νx̂1 + λ̂c,1 (1− σ)
Ys, and ŵf,1 = 1(126)

ceê
2
1

σ
=

λ̂c,1cx (σν + 1− σ)

(1− σ)
,(127)

σλ̂c,1

x̂1

cx
Aq (1− σ) r̂σ1

= ln

(
Ys

Yf − 1

)
+ ln

(
νx̂1

νx̂1 + λ̂c,1 (1− σ)

)
,(128)

λ̂c,1 (1− σ)

νx̂1 + λ̂c,1 (1− σ)
Ys = exp

(
cx

Aq (1− σ) λ̂σ
c,1

)
,(129)

where r̂1
.
=

ê1
x̂1

,
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and λs = 0 and λf > 0, where λs and λf denote the multipliers of constraint (35) under the success

state and failure state and λ̂c,1 denote the Lagrangian multiplier of constraint (34).

Similarly to the laissez-faire equilibrium, the ex ante participation constraint is not binding, and

the constraint (35) is binding at the failure state but not at the success state, and the IC constraint

is binding.

Pigouvian subsidy backfire

We now compare the two outcomes above. Let ζ̂0
.
= ŵ0

πs
and ζ1

.
= ŵ1

Ys
denote the equity share under

the laissez-faire equilibrium and the Pigouvian subsidy, respectively. For simplicity, assume the

failure state yields Yf = 2 and πf = 2 in the following analyses.

Assume that the knowledge spillovers is not very high, i.e., the difference between Ys and πs is

not large, and the researcher’s contribution to the successful commercialization is limited. Formally,

πs (2− σ)

1− σ
>

Ys (2− ρ)

1− ρ
(130)

ρν < 1.(131)

Given the conditions (130) and (131), we characterize the economic environment such that the

Pigouvian subsidy reduces the agent’s equity share, which requires Ys close to πs. The formal

statement is as follows.

Proposition 10. Given the economic environment (130) and (131), the agent’s equilibrium equity

shares decrease by the Pigouvian subsidy, i.e., ζ̂1 < ζ̂0, if the following conditions hold,(
πs (1− ρ)

2− ρ

)ρ

<

(
Ys (1− σ)

2− σ

)σ

,(132)

(
(1− ρ) d̄

ν

) ρd̄
1−ρd̄

> πs

(
1 +

(1− ρ) d̄

ν

)
,(133)

where d̄
.
=

ν

Ys − πs

(
πs

1− σ
− Ys

1− ρ

)
,

The sufficient conditions for the Pigouvian subsidy to reduce the agent’s equity share imply

that the social payoff is not very larger than the startup’s payoff obtained from product market

success. Conditions 132 and 133 strengthen the economic environment conditions 130 and 131.

Below first analyzes the economic environment for the Pigouvian subsidy to reduce research

efforts. Strikingly, a more considerable role of research efforts, i.e., a large σ, could make the

Pigouvian subsidy more likely to backfire.

Proposition 11. The Pigouvian subsidy reduces research efforts, i.e., ê1 < ê0, under (130), (131),
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(132), (133) and the condition below,

1 <
Aq

Ap
<

(
Aq

cx

)1− ρ
σ

.(134)

The proposition above implies that even though the productivity of technology knowledge is

larger than that of the commercial product, i.e., Aq > Ap, the Pigouvian subsidy compensates

knowledge spillovers could reduce research efforts if the marginal effort cost of entrepreneur’s busi-

ness expansion effort is low, i.e., cx is small. This is because the Pigouvian subsidy favors the

principal, the researcher, who exploits the favorable decision right to substitute own efforts with

the entrepreneur’s efforts.

Additionally, if the researcher’s effort contributes very small to the product market or con-

tributes dramatically to the knowledge spillovers, i.e., a low-valued ρ or a large β, condition (134)

is likely to hold, and strikingly, the Pigouvian subsidy still reduces researcher efforts by giving

researcher more favorable decision right which enables him to exploit the agent more. However,

intuitively, when the research efforts are influential to the success in social value, i.e., a large β,

the research efforts reduction is more detrimental to the social welfare. Worse still, the government

is more likely to subsidize under such circumstances. It thus demonstrates the policy relevance

and significance of our argument. The intuitive common wisdom received by many governments

to subsidize technology startups could backfire and call for a comprehensive review of the internal

organizational structure of startups.

By comparing the outcomes above, we first show that the Pigouvian subsidy reduces the agent’s

equilibrium equity share and then demonstrate that the R&D efforts reduce simultaneously. In

other words, the Pigouvian subsidy reduces the research effort and worsens production efficiency

and inequality across players.

Proof of Lemma 6

The participation constraint binds at the failure state, i.e., U (wf,0) = u and hence wf,0 = 1.

By FOCs of the Lagrangian, we characterize the equilibrium. The FOC of the IC constraint

(31),

cx = Ap (1− α) r̂α0 lnws,(135)

where r̂0
.
=

ê0
x̂0

.
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The FOC of ws deriving the agent’s equilibrium equity share,

νp(e, x)

πs − ws
=

µpx(e, x)

ws

⇔ νApr
αx

πs − ws
=

µAp (1− α) r̂α0
ws

⇔ ws =
µ(1− α)πs

νx+ µ(1− α)

The FOC of x is

x ln

(
πs − ws

πf − 1

)
= µα lnws

⇒
ln
(
πs−ws
πf−1

)
lnws

=
µα

x

FOC with regard to e is

Apα
rα

e

[
xν ln

(
πs − ws

πf − 1

)
+ µ (1− α) lnws

]
= cee

⇒
(
xν

µα

x
+ µ (1− α)

)
lnws =

cee
2

Apαrα

⇒ µ (αν + 1− α) cx
Ap (1− α) rα

=
cee

2

Apαrα

⇒ µ (αν + 1− α) cx
(1− α)

=
cee

2

α
,

where the second equation is from plugging (124) and (122) in the first equation. The proof of

7 is similar as above.

Proof of Proposition 10.

Let k̂0
.
=

λ̂c,0

x̂0
and k̂1

.
=

λ̂c,1

x̂1
, where λc,0, λc,1 denote the Langrangian multiplier of the incentive

compatibility constraint in laissez-faire equilibrium and the equilbrium with the Pigouvian subsidy.

The first step shows that k̂0 > k̂1 is sufficient for ζ̂0 > ζ̂1, where ζ denotes the agent’s equilibrium

equity share and µ denote the Lagrangian multiplier of incentive-compatibility constraint. Second,

we transform the equilibrium characterizations into equations with k̂0 and k̂1. Third, we demon-

strate the necessary and sufficient condition of k̂0 > k̂1 from which we prove the sufficiency in the

propostion.

Step 1: Prove that , ζ̂0 > ζ̂1 is equivalent to k̂0 > k̂1
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From the characterization lemmas,

ζ̂0
.
=

ŵξ,0

πξ
=

k̂0 (1− ρ)

ν + k̂0 (1− ρ)

ζ̂1
.
=

Yξ
ŵ1

=
k̂1(1− σ)

ν + k̂1(1− σ)
.

Then k̂0 > k̂1 leads to the following condition,

ζ̂0 =
1

ν
k̂0(1−ρ)

+ 1

>
1

ν
k̂0(1−σ)

+ 1

>
1

ν
k̂1(1−σ)

+ 1
= ζ̂1,

where k
.
= λc

x and the first inequality is from ρ < σ.

Step 2: Equilibrium characterization with variables k̂0 and k̂1.

The laissez-faire equilibrium is characterized by the following equation system
ê0

2 =
λ̂c,0(ρν+1−ρ)ρcx

(1−ρ)ce

ρλ̂c,0

x̂0
=

ln

(
πξ−ŵξ,0
πf−1

)
ln ŵξ,0

ŵξ,0 =
λ̂c,0(1−ρ)

νx̂0+λ̂c,0(1−ρ)
πξ = exp

(
cx

Ap(1−ρ)r̂ρ0

)
.

Plug k
.
= λc

x into the second and third equations,

ρλc

x
= ρk

ln

(
πξ − wξ

πf − 1

)
= ln

πξ
πf − 1

+ ln
νx̂0

νx̂0 + ˆλc,0 (1− ρ)

= ln
πξ

πf − 1
+ ln

ν

ν + k (1− ρ)

lnwξ = lnπξ + ln
k (1− ρ)

ν + k (1− ρ)

⇒ ρk

(
lnπξ + ln

k (1− ρ)

ν + k (1− ρ)

)
= ln

πξ
πf − 1

+ ln
ν

ν + k (1− ρ)(
πξ

k (1− ρ)

ν + k (1− ρ)

)ρk

=
πξ

πf − 1

ν

ν + k (1− ρ)
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Assume πf = 2 = Yf for simplicity.

νπ1−ρk
ξ =(ν + k (1− ρ))1−ρk (k (1− ρ))ρk ,

⇔ νπ1−ρk
ξ =(ν + k (1− ρ))

(
1

ν
k(1−ρ) + 1

)ρk

.(136)

k̂0 is uniquely solved by equation (136) and similarly, k̂1 is uniquely solved by

(137) νY 1−σk
ξ = (ν + k (1− σ))

(
1

ν
k(1−σ) + 1

)σk

.

Step 3: Sufficient and necessary condition for k̂0 > k̂1

Similarly, let LS(k;σ, Ys) and RS(k;σ, Ys) denote the left-hand side and the right-hand side of

equation (137). νY 1−σk
ξ decreases in k and the monotonicity of RS(k;σ, Ys) with regard to k are

shown as below.

dRS(k;σ, Ys)

dk
=

1− σ

ν + (1− σ) k
+

σν

ν + (1− σ) k
− σ ln

(
ν

(1− σ) k
+ 1

)
=

1 + σ (ν − 1)

ν + (1− σ) k
+ σ ln

(
(1− σ) k

ν + (1− σ) k

)
∝

1
σ + (ν − 1)

ν + (1− σ) k
+ ln

(
(1− σ) k

ν + (1− σ) k

)
=

1
σ + (ν − 1)

ν + (1− σ) k
− ln

(
1 +

ν

(1− σ) k

)
> lim

k→∞

[
1
σ + (ν − 1)

ν + (1− σ) k
− ln

(
1 +

ν

(1− σ) k

)]
= 0,

where the last inequality is because
1
σ
+(ν−1)

ν+(1−σ)k − ln
(
1 + ν

(1−σ)k

)
decreases in k.

Therefore, LS(k;σ, Ys)−RS(k;σ, Ys) decreases in k, and k̂0 > k̂1 is equivalent to

LS(k̂0;σ, Ys)−RS(k̂0;σ, Ys) < LS(k̂1;σ, Ys)−RS(k̂1;σ, Ys) = 0
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Plug in k̂0 in to LS(k̂0;σ, Ys)−RS(k̂0;σ, Ys) < 0 and rearrange it.

LS(k̂0;σ, Ys) <RS(k̂0;σ, Ys),

⇔
νY 1−σk̂0

ξ

νπ1−ρk̂0
s

<
RS(k̂0;σ, Ys)(

ν + k̂0 (1− ρ)
)(

1
ν

k̂0(1−ρ)
+1

)ρk̂0
,

⇔Ys
πs
·
(
Y σ
s

πρ
s

)−k̂0

<
ν + k̂0 (1− σ)

ν + k̂0 (1− ρ)


(
1 + ν

(1−σ)k̂0

)σ
(
1 + ν

(1−ρ)k̂0

)ρ


−k̂0

,

⇔
Ys

ν+k̂0(1−σ)
πs

ν+k̂0(1−ρ)

·


(

Ys
1+ ν

(1−σ)k̂0

)σ

(
πs

1+ ν

(1−ρ)k̂0

)ρ


−k̂0

< 1.(138)

where the first transformation is to divide each side by the left-hand side and the right-hand side

of equation (136), and it holds due to k̂0 as the solution of (136).

Last, we derive the sufficient condition for (138). First, equation (138) holds given that each

ratio in (138) is no more than 1, i.e.,

Ys

ν + k̂0 (1− σ)
≤ πs

ν + k̂0 (1− ρ)(
Ys

1 + ν
(1−σ)k̂0

)σ

≥

(
πs

1 + ν
(1−ρ)k̂0

)ρ

.

Rearrange each inequality above, and

k̂0 ≤
ν

Ys − πs

(
πs

1− σ
− Ys

1− ρ

)
,(139) (

πs
1 + ν

(1−ρ)k̂0

)ρ

≤

(
Ys

1 + ν
(1−σ)k̂0

)σ

,(140)

where condition (130) ensures (139) is well-defined.

Then we show that, under (131), k̂0 > ν is sufficient for (140), i.e., Under (139),

(141) k̂0 > ν ⇒

(
πs

1 + ν
(1−ρ)k̂0

)ρ

≤

(
Ys

1 + ν
(1−σ)k̂0

)σ

.

Below is the proof of (141). Let x
.
= ν

k , inequality (140) is represented by

ρ ln

(
πs (1− ρ)

1− ρ+ x̂0

)
≤ σ ln

(
Ys (1− σ)

1− σ + x̂0

)
.
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Let W (x)
.
= ρ ln (πs (1− ρ)) − σ ln (Ys (1− σ)) + σ ln (1− σ + x) − ρ ln (1− ρ+ x). W (x) in-

creases in x because

W ′(x) =
σ

1− σ + x
− ρ

1− ρ+ x
> 0, ∀x ≥ 0.

Thus, given k̂0 > ν, x̂0 < 1 and hence

W (x̂0) < ρ ln (πs (1− ρ))− σ ln (Ys (1− σ)) + σ ln (2− σ)− ρ ln (2− ρ)

< ln

(
πs (1− ρ)

2− ρ

)ρ

− ln

(
Ys (1− σ)

2− σ

)σ

< 0,

where the last inequality is From (139).

Combine with (139)

(142) ν < k̂0 <
ν

Ys − πs

(
πs

1− σ
− Ys

1− ρ

)
.

Then we show that conditions (132) and (133) are sufficient for (142).

LetR (k) denote the right-hand side of equation (136), i.e., R (k)
.
= ln (ν + (1− ρ) k)−ρk ln

(
ν

(1−ρ)k + 1
)
.

Take derivative of R(k) as follows

R′ (k) =
1− ρ

ν + (1− ρ) k
+

ρν

ν + (1− ρ) k
− ρ ln

(
ν

(1− ρ) k
+ 1

)
=

1− ρ+ ρν

ν + (1− ρ) k
− ρ ln

(
ν

(1− ρ) k
+ 1

)
=

1− ρ+ ρν

ν + (1− ρ) k
− ρ ln (ν + (1− ρ) k) + ρ ln ((1− ρ) k)

=
1 + ρ (ν − 1)

ν + (1− ρ) k
+ ρ ln

(
(1− ρ) k

ν + (1− ρ) k

)
∝

1
ρ + (ν − 1)

ν + (1− ρ) k
+ ln

(
(1− ρ) k

ν + (1− ρ) k

)
=

1
ρ + (ν − 1)

ν + (1− ρ) k
− ln

(
1 +

ν

(1− ρ) k

)
> lim

k→∞

[
1
ρ + (ν − 1)

ν + (1− ρ) k
− ln

(
1 +

ν

(1− ρ) k

)]
= 0,

where the last inequality is because
1
ρ
+(ν−1)

ν+(1−ρ)k + ln
(

(1−ρ)k
ν+(1−ρ)k

)
decreases in k.

Therefore, R′ (k) > 0. equation (136) characterizing k̂0 is represented as νπ1−ρk
s = R (k). Let

NS(k)
.
= ln ν + (1− ρk) lnπs −R (k).

NS(k) decreases in k because (1− ρk) lnπs decreases in k under πs > 2 and R (k) increases in
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k. Thus, condition (142) is equivalent to

NS(ν) > NS(k̂0) > NS

(
ν

Ys − πs

(
πs

1− σ
− Ys

1− ρ

))
.

The first inequality holds under condition (131), which is proved as follows,

NS(ν) = ln ν + (1− ρν) lnπs −R (ν)

> ln ν +
(
1− ρk̂0

)
lnπs −R

(
k̂0

)
= 0

⇔
(

πs
2− ρ

)1−ρν

> (1− ρ)ρν

⇔
(

πs
2− ρ

) 1−ρν
ρν

> 1− ρ

where the last line is from πs > 2 and ρv ∈ (0, 1).

NS

(
ν

Ys − πs

(
πs

1− σ
− Ys

1− ρ

))
< 0⇒

(
1 +

(1− ρ) d̄

ν

)(
(1− ρ) d̄

ν

) ρd̄
1−ρd̄

> πs,

where d̄
.
= ν

Ys−πs

(
πs
1−σ −

Ys
1−ρ

)
.

To sum up, under conditions (130) and (131), the following conditions are well-defined and

sufficient for k̂0 > k̂1, (
πs

2− ρ

)1−ρν

> (1− ρ)ρν

(
(1− ρ) d̄

ν

) ρd̄
1−ρd̄

>πs

(
1 +

(1− ρ) d̄

ν

)
,

where d̄
.
= ν

Ys−πs

(
πs
1−σ −

Ys
1−ρ

)
.

Proof of Proposition 11.

We take the ratio ê0
ê1

and decompose it into three terms. We analyze three terms in three steps.

Step 1: From previous results, we know that the equilibrium efforts are characterized by

ê0 =A
1
ρ
p (1− ρ)

1
ρ
−1

(ρν + 1− ρ) ρ
c
1− 1

ρ
x

ce

[
ln

(
(1− ρ)πξ
ν
k̂0

+ (1− ρ)

)] 1
ρ

k̂0,(143)

ê1 =A
1
σ
q (1− σ)

1
σ
−1 (σν + 1− σ)σ

c
1− 1

σ
x

ce

[
ln

(
(1− σ)Yξ
ν
k̂1

+ (1− σ)

)] 1
σ

k̂1.(144)

84



The ratio between ê0 and ê1 is

ê0
ê1

=
Bπ

Bg

[
ln

(
(1−ρ)πξ
ν

k̂0
+(1−ρ)

)] 1
ρ

[
ln

(
(1−ρ)πξ
ν

k̂0
+(1−ρ)

)] 1
σ

k̂0

k̂1
.

From Proposition (10), k̂0
k̂1

> 1, where k̂0 and k̂1 are solutions of equation (136) and (137),

respectively.

Step 2: show that

[
ln

(
(1−ρ)πξ
ν

k̂0
+(1−ρ)

)] 1
ρ

>

[
ln

(
(1−σ)Yξ
ν

k̂1
+(1−σ)

)] 1
σ

.

From previous results, (139) is equivalent to

πs

ν + k̂0 (1− ρ)
≥ Ys

ν + k̂0 (1− σ)
.

Because ρ < σ and k̂0 > k̂1, the inequality above leads to

πs
ν
k̂0

+ (1− ρ)
≥ Ys

ν
k̂0

+ (1− σ)

⇒ πs (1− ρ)
ν
k̂0

+ (1− ρ)
≥ Ys (1− σ)

ν
k̂0

+ (1− σ)

⇒ πs (1− ρ)
ν
k̂0

+ (1− ρ)
≥ Ys (1− σ)

ν
k̂1

+ (1− σ)

⇒ ln

(
(1− ρ)πξ
ν
k̂0

+ (1− ρ)

)
≥ ln

(
(1− ρ)πξ
ν
k̂0

+ (1− ρ)

)

⇒

[
ln

(
(1− ρ)πξ
ν
k̂0

+ (1− ρ)

)] 1
ρ

>

[
ln

(
(1− ρ)πξ
ν
k̂0

+ (1− ρ)

)] 1
σ

,

where the first line is from 1 − ρ > 1 − σ,the second is from k̂0 > k̂1, the third are due to ln(·) as
increasing function and the last is from 1

ρ > 1
σ .

Step 3: Show that Bπ
Bg
≥ 1 under k̂0

k̂1
> 1 and equation (134), where Bπand Bg denote the term

independent of k in equation (143) and (144), respectively,

Bπ
.
=A

1
ρ
p (1− ρ)

1
ρ
−1

(ρν + 1− ρ) ρ
c
1− 1

ρ
x

ce

Bg
.
=A

1
ρ
q (1− σ)

1
ρ
−1

(σν + 1− σ)σ
c
1− 1

ρ
x

ce
.
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We take the ratio Bπ
Bg

as given

Bπ

Bg
= c

1
σ
− 1

ρ
x

A
1
ρ
p

A
1
σ
q

 ρ
(

ρν
1−ρ + 1

)
σ
(

σν
1−σ + 1

) (1− ρ)
1
ρ

(1− σ)
1
σ

 .

Below we show that c
1
σ
− 1

ρ
x

A
1
ρ
p

A
1
σ
q

> 1 under condition (134).

c
1
σ
− 1

ρ
x

A
1
ρ
p

A
1
σ
q

=A
1
ρ
− 1

σ
q

(
Ap

Aq

) 1
ρ

c
1
σ
− 1

ρ
x ,

=

(
Aq

cx

) 1
ρ
− 1

σ
(
Ap

Aq

) 1
ρ

,

∝
(
Aq

cx

)1− ρ
σ Ap

Aq
> 1,(145)

where the last inequality is from
Aq

Ap
<
(
Aq

cx

)1− ρ
σ

The inequality above combines with (145) leads to

Bπ

Bg
= c

1
σ
− 1

ρ
x

A
1
ρ
p

A
1
σ
q

 ρ
(

ρν
1−ρ + 1

)
σ
(

σν
1−σ + 1

) (1− ρ)
1
ρ

(1− σ)
1
σ

 > 1,

i.e., Bπ > Bg. Combining the three steps, ê0
ê1

> 1.

86


	Introduction
	Related Literature
	Public Intervention in Innovation and Entrepreneurship
	Optimal Innovation Contract

	Main Model
	Setup
	First-best Allocation
	Equilibrium in laissez-faire
	Full Internalization by Pigouvian Subsidy
	Pigouvian Subsidy Backfire

	Extension and Discussion
	Optimal Rate of Compensation
	Multidimensional Compensation Scheme
	Increasing Entrepreneur's Outside Option Value
	Entrepreneur as Principal
	Information Friction

	Conclusion and Policy Implications

