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1 Introduction

Models of differentiated product demand systems are essential for the analysis of economic

topics such as market power, mergers, firm entry, and tax policy in a wide range of indus-

tries. Most modern applied work using differentiated product demand follows the estimation

approach developed by Berry (1994) and Berry, Levinsohn, and Pakes (1995) (hereafter re-

ferred to as BLP). This method involves using empirically observed aggregate market shares

to estimate choice probabilities predicted by discrete choice models.

Constructing market shares requires researchers to observe the size of the market. Market

size consists of all observed sales (the inside goods) plus all potential purchases (the outside

goods). Potential purchases are generally unobservable and are therefore a source of possible

mismeasurement of market size. For example, when estimating demand in the airline indus-

try, a market is typically defined as an origin-destination pair of cities. How then does one

properly determine the number of potential flyers in that pair? Is it just people who have

chosen to travel by other means between the two cities? What about those who might have

decided to travel if prices were lower? Is the market the entire population in the end-point

cities, which likely includes some who would never travel to the destination?

Many empirical results are sensitive to market size (see section 1.1 for details and exam-

ples). Yet how to choose market size in demand models has received limited attention in the

literature. A few researchers have commented on this problem1, but provide little guidance

on what to do about unobserved or mismeasured market size.

A common empirical choice is to assume the market size equals the population of the

market times a constant2. For example, Eizenberg and Salvo (2015) assume the soft drink

market size, in liters, is six times the population. This constant is not observed or estimated

in general but is chosen in an ad hoc fashion by the researchers, justified based on industrial

background or consumer behavior. This constant is not a free normalization as it affects the

estimates of demand parameters that govern elasticities and counterfactual simulations.

This paper shows how to correct for the unknown market size in random coefficients BLP

and other related demand models. For example, in the case where market size is a constant

times the observed population, we provide sufficient conditions to point identify and estimate

this constant along with all the other parameters of the BLP model. More generally, market

size can be point identified and estimated when it is a general function of observed variables

and unknown parameters. So, for example, in the airline demand model, market size can

1For example, Berry (1994) states that “issues that might be examined include questions of how to
estimate market size when this is not directly observed”.

2Well-known examples include Nevo (2001), Petrin (2002), Rysman (2004), Berto Villas-Boas (2007),
Berry and Jia (2010) and Eizenberg and Salvo (2015).
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be a function of the population in the origin city, population in the destination city, city

characteristics like being a hub or not, and a vector of unknown parameters that are identified

and estimated along with the rest of the BLP model.

Our identification exploits two important features: exogenous variation that shifts quan-

tities across markets and the nonlinearity of the demand model. It does not rely on side

information such as micro-moments or additional data beyond those typically used in stan-

dard BLP. A key insight is that any exogenous changes in product characteristics affect the

total sales of inside goods, and the responsiveness of total sales to this variation depends on

the size of the outside market. Why this variation has extra identifying power for parame-

ters beyond ordinary demand coefficients? In section 2, we will show that the log of product

share in the plain multinomial logit model is linear in product characteristics but nonlinear

in market size parameters, making identification possible.

Other theoretical results in this paper include: (a) Deriving the bias caused by mismea-

sured market size. (b) Establishing low-level assumptions on instruments for identifying

the standard random coefficient BLP model, both with and without identifying market size

as well. (c) Showing identification in models where market size is an unknown function of

observed variables. (d) Providing stronger conditions that permit point identification and

estimation of market size, even when the demand model is not known or nonparametric

(e.g., in Berry and Haile (2014)’s nonparametric BLP framework). This result allows for

testing market size specifications without estimating the demand model. (e) Offering sim-

pler identification results for the plain multinomial logit model, e.g., employing market fixed

effects.

In addition to the identification results, we demonstrate how our proposed method is

related to but different from commonly used approaches (e.g., implement a nested logit

model or market fixed effects) that aim to reduce biases from unknown market size. We for-

mally demonstrate that these existing approaches have some theoretical basis and intuition.

Nevertheless, they are not equivalent to our approach and cannot eliminate all biases. Fur-

thermore, we highlight that a special case of nonparametric estimation of random coefficients

is equivalent to estimating the market size, but it requires imposing particular assumptions

on the distribution of random coefficients.

Based on these identification results, we apply our method to a merger simulation of

carbonated soft drink companies. We specifically select the soda market for several reasons:

First, it is a market frequently studied using structural methods that involve estimating

random coefficients logit models. Second, the existing literature lacks a consensus on how

to define market size. Third, this market satisfies the conditions for strong identification,

which we will state in the Monte Carlo simulation section. In the merger analysis, we use
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both our proposed method and the standard BLP to estimate demand, while assuming a

Bertrand competition among firms. Using the estimated market size of 12 servings per week,

we predict a price effect that is 45% higher compared to the literature’s assumption of 17

servings per week. Our market size estimate also suggests that defining market size based on

per capita consumption of all non-alcoholic beverages (a common practice in the literature)

may be too large. Additionally, in Appendix K, we present a second merger analysis using

the constructed cereal data from Nevo (2000). These counterfactual simulations demonstrate

substantial gains from our proposed correction.

Furthermore, in the Monte Carlo simulations (Appendix H), we examine what parameters

are most sensitive to errors in market size measurements and assess whether adding random

coefficients helps mitigate bias. We also show that our proposed approach performs well,

particularly when the true share of the outside option is not extremely large, and so our

method will generally be useful in applications.

Our proposed method is transparent and simple to implement. It requires estimating

only a few extra nonlinear parameters, along with the standard BLP estimation. Researchers

may have tried to estimate market size, but the lack of identification theorem and the un-

satisfactory empirical performance or numerical issues with the estimator have hindered the

widespread adoption of market size estimation in applied work. We provide conditions under

which the market size is identified, discuss the data variation that facilitates identification,

and propose tests to assess the relevance of these instruments. We hope this paper can al-

leviate researchers’ uncertainty about the market size. Moreover, whenever the market size

itself is important to practitioners or regulators, this method can serve as a means to infer

the size of the market. Note, that although the solution is simple, it goes beyond merely

adding a regressor or market fixed effects. Our identification theorems focus on market-level

aggregate data, but we believe they can be extended to random coefficients logit models with

individual-level purchase data (or micro-BLP).

1.1 Why Market Size Matters One argument for not correcting the market size issue is

the belief that a random coefficient on price (or on the constant term) or a nesting parameter

can partially account for the effects of mismeasured market size. For example, Miller and

Weinberg (2017) state that the nesting parameter ensures that estimates are not too sensitive

to the market size measure. Empirical studies that use random coefficients sometimes yield

similar results for certain calculations, such as own- and cross-price elasticities, when different

assumptions about market size are employed. Examples include Rysman (2004), Iizuka

(2007), and Duch-Brown et al. (2017). However, employing more flexible demand models or

including a large number of random coefficients do not fully eliminate biases. The extent to

which these methods fix the problem is application specific and depends on the underlying
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data generating process.

Market size assumptions have a much larger effect on some types of calculations than

others. Our Monte Carlo simulations and empirical application suggest that incorrect market

size assumptions can greatly bias estimates of outside good elasticities, outside good diver-

sion ratios, choice probabilities, and aggregate price elasticities3. This means that different

market size assumptions can lead to substantially different results for certain counterfactual

simulations and empirical questions, particularly those related to the size of the outside

market.

One example is the effects of new goods entry or exit. The value of including a particular

good in the choice set (i.e., Willingness-To-Pay) can be relevant because WTP is essentially

a measure of change in outside good choice probabilities (see discussion in Conlon and Mor-

timer 2021). Another example is tax or subsidy policies. As demonstrated in Ivaldi and

Verboven (2005) and Appendix J of our paper, the price elasticity of aggregate demand is

highly sensitive to market size. The aggregate elasticity, which reflects consumers’ overall

response to a price change in all products, is particularly relevant for tax policies. Lastly,

market size impacts the estimated effects of mergers. Various merger analysis papers, in-

cluding Ivaldi and Verboven (2005), Weinberg and Hosken (2013), Bokhari and Mariuzzo

(2018) and Wollmann (2018), conduct robustness checks on market size assumptions, using

different logit-based models and demand specifications, and find that market size impacts

simulated price changes and consumer welfare. In addition to the existing evidence in the

literature, our merger simulations further demonstrate that incorrect market size assump-

tions lead to substantially biased estimates of the loss (or gain) to society of a merger, by

under- or overestimating price changes.

Furthermore, in the Department of Justice (DOJ) documents, the word “market size”

appears at a high frequency, implying that the size of a market by itself is a piece of critical

and useful information for firms and regulators4. This suggests that obtaining a consistent

estimate of the true market size is important in itself, in addition to its use in removing

model estimate biases.

1.2 Literature Review In the empirical industrial organization (IO) literature, market

3See, for example, Conlon and Mortimer (2021) Table 4, which shows that diversion ratios to other
goods are not highly sensitive to market size in the BLP automobile application. Similarly, in Nevo’s cereal
application, own elasticities are not overly sensitive to market size. However, outside diversion ratios and
aggregate elasticities exhibit significant changes.

4In a talk at the DOJ/FTC merger workshop, Newmark (2004) emphasizes the significance of market
size/population in price-concentration studies for merger cases. Additionally, firms predict product quantities
on the basis of potential market size. The Comments of DOJ on Joint Application Of American Airlines
Et Al. state that “To model the benefits of an alliance, airlines typically use QSI models to forecast traffic
changes . . . Given a fixed market size, passengers are assigned based on relative attractiveness of different
airline offerings.”
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size is often assumed rather than observed or estimated. Notable examples include previous

works that use the number of households in the US as the market size in analyzing the

automobile industry (such as BLP and Petrin 2002). Other examples include Nevo (2001)

(ready-to-eat cereal market), Rysman (2004) (yellow pages market), Berto Villas-Boas (2007)

(yogurt market), Berry and Jia (2010) (airline market), Ho, Ho, and Mortimer (2012) (video

rental market), Ghose, Ipeirotis, and Li (2012) (hotel market), and Eizenberg and Salvo

(2015) (soft drink market), among others. These studies all assume that the total market

size is observed as the population measure multiplied by a constant.

Several empirical articles recognize the issue and explicitly incorporate market size esti-

mation into demand models (e.g., Greenstein 1996; Berry, Carnall, and Spiller 2006; Chu,

Leslie, and Sorensen 2011; Sweeting, Roberts, and Gedge 2020; and Li et al. 2022). Green-

stein (1996) assume a linear functional form for market size as a function of total sales.

Their demand system is a vertical model similar to Bresnahan and Reiss (1987), which does

not account for individual heterogeneity in preferences, distinguishing it from our approach.

Chu, Leslie, and Sorensen (2011) utilize supply side pricing conditions as additional moments

to estimate market size. While this method does not impose functional form assumptions,

it requires one to observe the marginal costs of firms. Berry, Carnall, and Spiller (2006)

employ a similar idea to ours within the BLP framework, but their market size is restricted

to be proportional to a single variable, which can be viewed as a special case of our more

general model. While the authors estimate the market size, they do not discuss identification

as we do. Sweeting, Roberts, and Gedge (2020) and Li et al. (2022) use various market-level

measures to proxy market size. They estimate a generalized gravity equation and obtain

predicted values from a regression of the number of passengers on variables such as city-pair

distance and lagged passengers flow. The authors define market size as proportional to the

expected total passengers predicted from the gravity equation but leave the choice of the pro-

portionality factor to the researcher. In a different approach, Hortaçsu, Oery, and Williams

(2022) utilize search data to estimate a Poisson arrival process, using the arrival rate as a

proxy measure of market size. Their method applies to settings with observed individual

choice data, whereas we consider settings where only market-level data is available.

The closest study to ours is Huang and Rojas (2014), which provides theoretically-founded

methods to deal with the market size problem in a random coefficients logit setting, by ap-

proximating the unobserved market size as a linear function of market characteristics (Cham-

berlain’s device). They employ the control function method to handle price endogeneity as

in Petrin and Train (2010). By doing so, the unobserved market size becomes an additive

term outside of the nonlinear part of the demand function. In contrast, ours is built on the

standard BLP framework, where market size enters the moment restrictions in a nonlinear
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manner. Huang and Rojas (2014)’s method largely relies on the linear additivity and thus

can not extend directly to the BLP framework5. Their primary focus is on removing bias,

while our paper also aims to identify and estimate the market size.

Another strand of literature focuses on issues arising in estimating market shares from a

sample of consumers. Gandhi, Lu, and Shi (2020) address the problem of zeros in market

share data and propose a moment-inequality-based approach to estimate demand in such

cases. Berry, Linton, and Pakes (2004) derive the asymptotic theory for the BLP model,

taking into account sampling errors in estimating shares. In comparison, our paper tackles

a different problem, which is inherent to the model itself rather than features of the data

sample. Our goal is to address the more fundamental problem of the unobserved share of the

outside option and that all shares will be inconsistent in the limit. Unlike sampling errors

that diminish as the sample size increases, the errors we address persist and do not vanish.

More recently, theoretical literature on the identification and estimation of random co-

efficients aggregate demand model has been growing. Berry and Haile (2014) and Gandhi

and Houde (2019) highlight that identification of BLP demand models requires instruments

for not only endogenous prices but also endogenous market shares. Other studies that dis-

cuss the role of instruments in BLP models are Reynaert and Verboven (2014), Armstrong

(2016), and Conlon and Gortmaker (2020). We contribute to this literature by providing

low-level conditions on instruments for identification of random coefficients in the standard

BLP model, both with and without identifying market size.

Recent work generalizes the parametric demand models to more flexible nonparametric,

nonseparable demand systems. Nonparametric identification of aggregate demand models is

studied by Berry and Haile (2014), Gandhi and Houde (2019), Lu, Shi, and Tao (2021), and

Dunker, Hoderlein, and Kaido (2022), among others. Our paper also provides conditions for

identification of market size in nonparametric specified demand models.

The remainder of the paper is organized as follows. In section 2, we start with a multi-

nomial logit model to illustrate the problem of mismeasured market size and provide iden-

tification strategies. In section 3, the results are generalized to the random coefficients logit

model. Section 4 provides extensions. Section 5 presents an empirical application. Sec-

tion 6 summarizes additional results provided in the supplemental appendix, and section 7

concludes.

5Petrin and Train (2010)’s control function approach is an alternative to the BLP approach in dealing
with the price endogeneity; which method to use will be application-specific. This discussion is outside the
scope of the present paper.
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2 The Multinomial Logit Demand Model

We first briefly review the setup of a plain multinomial logit model without random coeffi-

cients or individual-level covariates. Throughout this section, we assume exogenous prices

to simplify the exposition and focus more on market size identification. We then propose

a simple model of market size. The model contains assumptions on the unobserved outside

shares. We then combine both models and provide, in Theorem 1, assumptions under which

demand parameters and market size can be identified. In Appendix E, we extend Theorem

1 to a nested logit model, highlighting the discrepancies and connections between a nest

structure and the market size model.

2.1 Demand Model

Suppose that we observe T independent markets. A market can refer to a single region in

a single time period. Let Jt = (1, · · · , Jt) be the set of differentiated products in market

t, referred to as inside goods. Let j = 0 denote the outside option. As in Berry (1994),

we assume the indirect utility of consumer i for product j in market t is characterized by a

linear index structure

Uijt = X ′jtβ + ξjt + εijt,

which depends on a vector of observed market-specific product characteristics Xjt ∈ RL,

unobserved characteristics ξjt, and idiosyncratic tastes of consumers εijt. Consumer tastes

are assumed to be independently and identically distributed across consumers and products,

with extreme value type I distribution.

Let the average utility index of product j at market t be denoted as δjt = X ′jtβ + ξjt,

with the mean utility for the outside option being normalized as δ0t = 0.

Let πjt denote the true conditional probability of choosing product j in market t. Each

consumer chooses the product that gives rise to the highest utility. This defines the set of

unobserved consumer tastes that corresponds to the purchase of good j. The probability of

choosing good j is obtained by integrating out over the distribution of consumer tastes εijt.

Given the functional form and parametric assumptions, the true choice probability takes an

analytic form:

πjt =
exp(δjt)

1 +
∑Jt

k=1 exp(δkt)
∀j ∈ Jt, and π0t =

1

1 +
∑Jt

k=1 exp(δkt)
.

In a plain logit context, the nonlinear demand system can be inverted to solve for δjt as a
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function of choice probabilities, yielding

ln(πjt/π0t) = X ′jtβ + ξjt ∀j ∈ Jt. (1)

If the value of πjt and π0t were observed, parameters β can be consistently estimated by

regressing ln(πjt/π0t) on Xjt. Generalized Method of Moments (GMM) estimators can be

constructed based on the mean independence condition E(ξjt | Xjt) = 0. The conditions we

have imposed so far are standard assumptions made in Berry (1994) and the empirical IO

literature, which are sufficient to identify the demand parameters β when the market size is

correctly measured and therefore πjt and π0t are observed without errors.

2.2 Market Size Model

In this subsection we provide modeling assumptions for the unobserved πjt and π0t. These

assumptions allow us to characterize the connection between unobserved probabilities and

measures of market size. We then combine these assumptions with the demand system to

obtain a new model which we will later prove identification.

Define r∗jt by

r∗jt =
πjt∑Jt
k=1 πkt

∀j ∈ Jt, (2)

which is the true conditional choice probability of choosing product j, conditional on pur-

chasing any inside goods. Using equations (1) and (2), we have

ln
(
r∗jt
)

= ln

(
π0t

1− π0t

)
+X ′jtβ + ξjt ∀j ∈ Jt. (3)

Let Njt be the observed sales of good j in market t, and let N total
t =

∑Jt
j=1 Njt denote

the total observed sales of all goods. We observe rjt, where rjt = Njt/N
total
t represents the

fraction of total purchases spent on good j in market t, and therefore does not depend on the

outside option or the size of the total market. We call these rjt relative shares, and assume

rjt = r∗jt. In Appendix C, we relax this assumption and allow the true r∗jt to be unobservable,

introducing sampling errors or measurement errors in rjt.

In general, rjt would be observable along with N total
t . In most empirical contexts, we

might directly observe Njt. For example, the number of passengers on flights by airline j

in city pair t, or servings of cereals of brand j sold in city t. From these observed Njt we

can calculate rjt and N total
t . In other applications, rjt and N total

t might come from separate

sources. For instance, rjt could be the fraction of a set of sampled consumers who buy

product j in time period t, and N total
t could be separate estimates of total sales in time t.
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The issue with not observing market size is not observing π0t. If the total market size

were directly observed, we could calculate π0t from the observed N total
t and the market size.

However, observing only the relative shares rjt for all Jt goods does not provide sufficient

information to determine π0t. Therefore, we need to specify a model for the unobserved

outside share. Compared to equation (1), the model of equation (3) offers the advantage

that only the first term on the right side depends on the outside share, and thus it is easier

and more natural to impose assumptions on this additively separable term.

Let Mt be some observed population or quantity measure of market t that we believe is

related to the true market size. For instance, if a market is defined to be a city, Mt could

be the population size (e.g. Nevo 2001; Berto Villas-Boas 2007; Rysman 2004; Ho, Ho, and

Mortimer 2012; and Ghose, Ipeirotis, and Li 2012). Alternatively, Mt could be a prediction

of total product sales or the number of passengers on a flight (e.g. Sweeting, Roberts, and

Gedge 2020; Li et al. 2022; and Backus, Conlon, and Sinkinson 2021). Let Wt = Mt/N
total
t

denote observed market to sales. As discussed earlier, it is both natural and necessary to

place assumptions on π0t. For now, we assume that

ln

(
π0t

1− π0t

)
= ln (γWt − 1) (4)

for some constant γ. In Appendix C, we relax equation (4) by introducing a random noise

term vt, so that this relationship is approximate rather than exact. In section 3, we further

generalize the model by allowing π0t to depend on multiple γ’s6.

The model of equation (4) is sensible for the following reasons. In the conventional

approach, market size is assumed to be a known constant γ multiplied by an observed

population measure Mt. In this case, 1 − π0t = N total
t /γMt would equal 1/ (γWt), and

thus ln (π0t/(1− π0t)) would equal ln (γWt − 1). Equation (4) treats the usual constant γ as

unknown rather than known. Furthermore, equation (4) is consistent with a deeper economic

model, which we elaborate on in section 4.1.

Putting the above equations and assumptions together we get the estimating equation

ln (rjt) = ln (γWt − 1) +X ′jtβ + ξjt ∀j ∈ Jt (5)

In Appendix B, we demonstrate the bias introduced in estimating β when employing

the conventional approach of equation (1) with a mismeasured market size. For example, if

the market size used in estimation is larger than the true size, the model exhibits a positive

6An alternative approach to relax this modeling assumption, which we do not explore in the present
paper, is to consider γ as a function of observed market-level covariates that affect preferences. We leave
this possibility for future research.
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correlation between the price of good j and the measurement error, and a negative correlation

between the price and its own market share. As a result, the estimated price coefficient will

be biased downward (in absolute value), indicating an underestimation of price sensitivity.

2.3 Identification

Here we provide identification of model (5). Unknown parameters in this model include the

market size parameter γ and demand coefficients β. Our approach allows for the identi-

fication of both the true market size and demand parameters, relying on variation across

multiple markets. To achieve this, one would need to observe data from many markets. In

Appendix D, we present an alternative approach utilizing market fixed effects. However,

while the market fixed effects approach identifies demand parameters, it does not provide

identification of the market size.

Assumption 1. E (ξjt | Qt, X1t, . . . , XJtt) = 0, where Qt represents instruments for Wt. Wt

and Qt are continuously distributed. The number of markets T →∞.

Assumption 1 assumes that the additive error ξjt is mean independent of product char-

acteristics and some instrument Qt, and that the regressors have a continuous distribution.

Note that the nonlinear variable Wt in equation (5) is endogenous since it is a function of

quantities. The instrument Qt can take the form of a vector or a scalar. For the sake of conve-

nience, Theorem 1 employs a scalar Qt. The large T assumption is necessary as the theorem

is based on a conditional expectation conditioning on Qt, and the derivatives of the con-

ditional expectation. These derivatives would be estimated using nonparametric regression

techniques such as kernel regression or local polynomials (Li and Racine 2007). Assuming

Qt is continuous, it asymptotically requires observing all values of Qt on its support, hence

needs T to approach infinity. Moreover, this assumption implies that the instrument Qt can

not be a binary variable.

Theorem 1. Given Assumption 1 and equation (5), let Γ be the set of all possible values of

γ, if

1. function f(c, q, x) is twice differentiable in (c, q) for every x ∈ supp(Xjt), where

f(c, q, x) = E (ln (rjt)− ln (cWt − 1) | Qt = q,Xjt = x) ,

2. and ∂E
(
− Wt

cWt−1
| Qt = q,Xjt = x

)
/∂q > 0 or < 0 for all c ∈ Γ,

then γ and β are identified.
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The proof of Theorem 1, provided in Appendix A, works by showing that there exists q

and x such that g(c, q, x) = 0 has a unique solution c, where g(c, q, x) = ∂f(c, q, x)/∂q. To

provide an idea of what the restrictions in the theorem entail, consider the simplest (although

not possible in theory) case where Wt is exogenous. Then Wt serves as an instrument for

itself, i.e. Qt = Wt, and so the sufficient condition ∂E(− Wt

cWt−1
| Qt = q,Xjt = x)/∂q =

∂(− w
cw−1

)/∂w = 1/(cw − 1)2 > 0 is satisfied. On the other hand, if Wt is endogenous

but the instrument Qt is independent of Wt (conditional on Xjt), then E(− Wt

cWt−1
| Qt =

q,Xjt = x) = E(− Wt

cWt−1
| Xjt = x), which does not depend on q. Therefore the derivative

with respect to q would be zero, violating the condition. Generally, the second condition

in Theorem 1 is a nonlinear analog of the traditional relevance restriction required in the

classical linear IV model, requiring Wt to vary with Qt in a certain way.

Identification requires an instrument Qt, which varies with the market total sales and is

uncorrelated with the error term ξjt. A simple candidate satisfying these conditions is the

sum of exogenous characteristics of all products in market t. Since product characteristics

affect the utilities consumers get and lead to variations in quantities across regions or time

periods, the relevance condition is in general satisfied. The exogeneity condition is also

satisfied because the error term ξjt is not only mean independent of characteristics of product

j, but also of all other products in market t, making it mean independent of the sum of all

products. This resembles the standard BLP instrument, and a detailed discussion of this

type of instrument, known as “functions of inside regressors”, is deferred to the next section.

An exogenous price change, perhaps driven by tax or subsidy policies, can also serve

as an external instrument to identify the market size. For example, to study the demand

for alcohol or soda, sin taxes on these products can be utilized to construct the required

instruments. Intuitively, after a tax implementation, we can observe the decrease in market

quantity, which represents the proportion of consumers who switch to the outside option.

In a logit model, substitutions are proportional to the true market shares. The degree of

substitution to the outside option depends on the true market size. This suggests that if we

observe any variations in the outside diversion (due to changes in Qt), we can infer the true

market size.

Estimation of the model of equation (5) based on Theorem 1 is straightforward. It could

be done by a standard GMM estimation or nonlinear two-stage least squares estimation

using Qt as instruments.

2.3.1 Visual Intuition

After presenting our formal identification results, we offer visual intuition. As discussed

above, exogenous variations in characteristics across markets allow us to observe consumers
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entering or exiting the outside option, enabling the identification of γ. This exogenous

variation is typically already present in the data. For example, in a market with two goods

like Coke and Pepsi, when the characteristics of Pepsi get worse, total quantities decrease,

leading to an increase in Wt. The identification of γ follows from the relative increase in

Coke’s shares. If γ is large, a significant number of Pepsi consumers might divert to the

outside option, resulting in minimal diversion to Coke. Conversely, if γ is small, it implies

that fewer consumers are on the margin. Thus, when Pepsi worsens, more Pepsi users would

divert to Coke rather than the outside option.

Figure 1 illustrates the aforementioned intuition. In a simplified model where δjt =

−pjt + ξjt, with two goods (j = 1 Coke and j = 2 Pepsi), the space of εij is partitioned

into three regions, each corresponding to the choice of j = 0, 1, 2 (Berry and Haile 2014

and Thompson 1989). The measure of consumers in each region, i.e. integral of ε over the

region, reflects choice probabilities. For example, Pr(j = 1 | p, ξ) = Pr(εi1 > p1 − ξ1; εi1 >

εi2 +(p1−ξ1)−(p2−ξ2)). In Figure 1, panel (c) illustrates a larger probability of choosing the

outside option compared to panel (a), given a fixed known density function of εij. Since the

true choice probability π0 is unknown but only the relative inside good shares rj are known,

then the question we ask is whether the true data generating process (dgp) corresponds to

panel (a) or panel (c).

Panels (a) and (b) of Figure 1 depict a dgp where the true π0t is small. Panels (c) and

(d) show similar graphs but with large true π0t. When the price of good 2 increases, the

changes in choice probabilities π0t and π1t are captured by shaded boundaries S0 and S1. In

panel (b), the price increase prompts more consumers to switch to good 1, while in panel

(d), the same price change leads to more consumers switching to the outside option. The

relative diversion to the outside option compared to good 1, which is known, relies on the

original sizes of each region, which is unknown, and this relationship provides identification

of the underlying market size.

In the logit model, we have (∂π1t/∂p2t)/(∂π0t/∂p2t) = π1t/π0t. As both sides of the

equation are ratios, the unobserved choice probabilities can be transformed into observed

sales, (∂N1t/∂p2t)/(∂N0t/∂p2t) = N1t/N0t. Note that ∂N0t/∂p2t is observable since the total

sales decrease is just the increase in N0t, and vice versa. Thus, the ratio of derivatives on

the left side of the equation and N1t are all observed from data, which can help identify the

unobserved outside market size N0t.

With the inclusion of random coefficients in section 3, the simplified example depicted

in Figure 1 may not hold anymore. This is because an observed increase in substitution to

good 1 could be attributed to good 1 and good 2 being closer substitutes. However, the

underlying intuition remains valid: even without the independence of irrelevant alternatives
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(IIA) property, cross-product substitutions are still functions of the true choice probabilities.

Thus, the level of substitution to the outside good will depend on the true market shares.

Relative changes in quantities of inside versus outside goods can be exploited to recover the

true market size.

(0,0)
εi1

εi2

p1 − ξ1

p2 − ξ2

0
Coke

Pepsi

(a) small π0t

(0,0)
εi1

εi2

p1 − ξ1

p2 − ξ2
p′2 − ξ2

0
Coke

Pepsi

S0

S1

(b) small π0t, when p2 ↑ by ∆p

(0,0)
εi1

εi2

p1 − ξ1

p2 − ξ2

0 Coke

Pepsi

(c) big π0t

(0,0)
εi1

εi2

p1 − ξ1

p2 − ξ2
p′2 − ξ2

0 Coke

Pepsi

S0

S1

(d) big π0t, when p2 ↑ by ∆p

Figure 1: Intuition for Identification in Multinomial Logit Demand Model

2.4 The Nested Logit Demand Model

In Appendix E, we establish formal identification of market size in a nested logit demand

model. Here we briefly summarize the intuition. Consider the case where all goods are

divided up into two nests, one with the outside good as the only choice and the other

containing all inside goods. Using our notation, the estimating equation is a nonlinear
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function of the market size parameter γ and the nesting parameter ρ,

ln (rjt) =
1

1− ρ
ln (γWt − 1) +X ′jt

β

1− ρ
+

ξjt
1− ρ

,

and the total derivative with respect to these two parameters has independent variation. We

leverage instruments that shift Wt to separately identify γ and ρ.

3 The Random Coefficients Logit Demand Model

We generalize our previous results to the random coefficients demand model. We begin by

introducing the notation and model assumptions, and then present sufficient conditions for

model identification and suggest valid instruments. We then discuss the testing of instrument

relevance and provide intuition for identification. Additionally, we derive results for market

fixed effects and demonstrate that fixed effects would not be a viable solution for an unknown

market size.

3.1 Demand Model and Market Size

The utility of consumer i for product j in market t is now given by

Uijt = X ′jtβi + ξjt + εijt, (6)

where βi = (βi1, · · · , βiL). The individual-specific taste parameter for the l-th characteristics

can be decomposed into a mean level term βl and a deviation from the mean σlνil:

βil = βl + σlνil, with νi ∼ fν(ν)

where νil captures consumer characteristics. The consumer characteristics could be either

observed individual characteristics or unobserved characteristics. When estimating demand

models, what econometricians usually have are aggregate data, where no observed individual

characteristics are available. Therefore, in our analysis, we assume νil are some unobserved

characteristics with a known distribution fν . The extension to include observed consumer

characteristics will be straightforward if there are individual-level data.

As in section 2, let δjt denote the mean utility X ′jtβ + ξjt. Combining equations we have

Uijt = δjt +
∑
l

σlx
(2)
jtl νil + εijt,
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where X
(2)
jt = (x

(2)
jt1, · · · , x

(2)
jtL′) is a L′ × 1 subvector of Xjt that has random coefficients and

is the nonlinear components of the indirect utility function.

After integrating out over the logit error εijt, the true aggregate choice probability is

πjt

(
δt, X

(2)
t ;σ

)
=

∫
exp(δjt +

∑
l σlx

(2)
jtl νil)

1 +
∑Jt

k=1 exp(δkt +
∑

l σlx
(2)
ktlνil)

fν(ν)dν, (7)

where the arguments in the choice probability function are mean utilities δt = (δ1t, · · · , δJtt),
nonlinear attributes X

(2)
t = (X

(2)
1t , · · · , X

(2)
Jtt

) and taste parameters σ = (σ1, · · · , σL′). The

choice probability is written as a function of δt, X
(2)
t and σ in order to highlight its dependence

on the mean utilities, nonlinear attributes, and parameters of the model. We suppress the

dependence of the choice probability function on νi for brevity. The mean utility of outside

good is normalized to δ0t = 0.

We next consider a general model of market size. Let Mt = (M1t, · · · ,MKt) be a vector

of measures of the market size, and γ = (γ1, γ2), γ1 = (γ11, · · · , γK1) and γ2 = (γ12, · · · , γK2)

are two vectors of market size parameters. To ease the exposition, we again assume r∗jt = rjt.

Observational errors in rjt and other disturbances in the mismeasurement are therefore

assumed away. Recall that Njt is the observed sales of each good and N total
t is the total sales

of all inside goods. Assumption 2 formalizes the modeling assumption.

Assumption 2. (a) The observed N total
t and Mt are linked to the unobserved true choice

probability π0t

(
δt, X

(2)
t ;σ

)
by

1− π0t

(
δt, X

(2)
t ;σ

)
=

N total
t∑K

k=1 γk1M
γk2
kt

.

(b) The unobservable true conditional choice probability r∗jt is equal to the observed rjt, i.e.

πjt

(
δt, X

(2)
t ;σ

)
∑Jt

k=1 πkt

(
δt, X

(2)
t ;σ

) =
Njt

N total
t

.

The market size formula
∑
γk1M

γk2
kt has several appealing features. Taking the airline

market as an example, suppose M1t is the population of city A (a small market) and M2t

is the population of city B (a big market). The true size of a market defined by these two

end-point cities could be M2
1t + 3M2

2t. First, this formula allows for different coefficients

for each term. For instance, city B might have a larger coefficient due to being a major

transportation hub. Second, it accommodates nonlinearity in Mt. In the airline example,

larger metropolitan areas are more likely to have alternative transportation options, such as

16



high-speed rail or highways in multiple directions. Under Assumption 2, the implicit system

of demand equations in a given market t is given by

Nt∑K
k=1 γk1M

γk2
kt

= πt

(
δt, X

(2)
t ;σ

)
, (8)

where Nt = (N1t, · · · , NJtt) and πt(·) = (π1t(·), · · · , πJtt(·)) represent vectors of observed

quantities and choice probability functions.

3.2 Identification

In a standard BLP model, the link between the choice probability πjt(δt, X
(2)
t ;σ) predicted

by the model and the observed market shares is crucial. The key to identification and

estimation in a standard BLP model is to recover the mean utility δt as a function of the

observed variables and parameters, by the inversion of the demand equation system. Our

method builds on the same form of demand inversion while replacing observed market shares

with the unobserved ones.

The identification argument can be summarized into two parts: First, we show that for

any given parameters (γ, σ) and data (Nt,Mt, Xjt), the implicit system of equations (8)

has a unique solution δt for each market7. This is supported by Proposition 1, which es-

tablishes the existence and uniqueness of demand inversion as shown in Berry (1994) and

Berry, Levinsohn, and Pakes (1995), adapted to our framework (see also Berry and Haile

(2014) for demand inversion in nonparametric models). Second, once we have a unique se-

quence of inverse demand function δjt(Nt,Mt, X
(2)
t ; γ, σ), we can construct a corresponding

sequence of residual function ξjt(Nt,Mt, Xt; γ, σ, β), which will be defined later. Identifica-

tion is then based on conditional moment restrictions, and we will require unique solutions

to the associated unconditional moment conditions at the true parameter values.

Proposition 1. Let equations (7) and (8) hold. Define the function gt : RJt → RJt, as

gt(δt) = δt+ln(Nt)−ln(
∑K

k=1 γk1M
γk2
kt )−ln(πt(δt, X

(2)
t ;σ)). Given any choice of the model pa-

rameters (γ, σ) and any given (Nt,Mt, X
(2)
t ), there is a unique fixed point δt(Nt,Mt, X

(2)
t ; γ, σ)

to the function gt in RJt.

The proof of Proposition 1 closely follows the contraction mapping argument in Berry,

Levinsohn, and Pakes (1995). We show that all the conditions in the contraction mapping

7As equation (11) in Berry (1994) shows, the system of market shares used to solve for δ consists of
only the inside goods j = 1, · · · , J , not including s0t. However, the existence of good 0 is important both
because it has economic meaning, and also because it serves as a technical device, see Berry, Gandhi, and
Haile (2013) for a discussion.
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theorem are satisfied in our setting with the extra vector of γ. Therefore, the function g(δ)

is a contraction mapping.

In Proposition 1, we have shown that there is a unique fixed point δt to the function gt(δt).

Now, let θ = (γ, σ, β) ∈ Θ be the full vector of model parameters of dimension dim(θ). Given

the inverse demand function δjt(Nt,Mt, X
(2)
t ; γ, σ), we define the residual function as

ξjt (Nt,Mt, Xt; θ) = δjt

(
Nt,Mt, X

(2)
t ; γ, σ

)
−X ′jtβ. (9)

The uniqueness of δjt(Nt,Mt, X
(2)
t ; γ, σ) implies a unique sequence of ξjt(Nt,Mt, Xt; θ). Fol-

lowing Berry, Levinsohn, and Pakes (1995), Berry and Haile (2014), and Gandhi and Houde

(2019), we will assume that the unobserved structural error term is mean independent of

a set of exogenous instruments Zt, based off which we will later construct unconditional

moment conditions. Specifically, we replace the exogenous restriction in section 2 with the

following conditional moment restriction.

Assumption 3. Let Zt = (Z1t, · · · , ZJt). The unobserved product-specific quality is mean

independent of a vector of instruments Zt:

E (ξjt(Nt,Mt, Xt; θ0) | Zt) = 0.

Define hjt(θ) = ξjt(Nt,Mt, Xt; θ)φj(Zt), where φj(Zt) is a m × 1 vector function of the

instruments with m ≥ dim(θ). Then the conditional moment restriction implies

E (hjt(θ0)) = 0.

The instrument vector Zt typically includes a subvector of Xt that contains exogenous

characteristics and excluded price instruments such as cost shifters. The assumption posits

that the structural error is mean independent not only of the exogenous covariates of product

j but also of all other products. Similar to standard BLP models, two types of instruments

are generally required: (i) price instruments and (ii) instruments that identify nonlinear

parameters (σ and γ). We will discuss these instruments in detail in the next subsection.

Showing function gt(δt) has a unique fixed point δt is only a necessary condition for

identification. To complete the proof of point identification, we need conditions that are

sufficient for the existence of a unique solution to the moments.

Definition 1. θ0 is globally identified if and only if the equations E (hjt(θ)) = 0 have a
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unique solution at θ = θ0. In other words,

E
(
hjt(θ̃)

)
= 0 ⇐⇒ θ̃ = θ0, for all θ̃ ∈ Θ (10)

θ0 is locally identified if (10) holds only for θ̃ in an open neighborhood of θ0.

We formally define local identification in Definition 1. Assumption 4 in Berry and Haile

(2014) and equation (5) in Gandhi and Houde (2019) both impose a similar high-level iden-

tification assumption to (10). Theorem 5.1.1 in Hsiao (1983) (in line with Fisher 1966 and

Rothenberg 1971) provides sufficient rank conditions for the identification assumption stated

above to hold locally, which we summarize in Proposition 2.

Proposition 2 (Theorem 5.1.1 in Hsiao 1983). If θ0 is a regular point, a necessary and

sufficient condition that θ0 be a locally isolated solution is that the m × dim(θ) Jacobian

matrix formed by taking partial derivatives of E (hjt(θ)) with respect to θ, ∇θE (hjt(θ)) has

rank dim(θ) at θ0.

The idea of using full rank conditions to establish identification in nonlinear simultaneous

equations models dates back to Fisher (1966) and Rothenberg (1971). See Hsiao (1983)

for a comprehensive review. The application of full rank conditions for achieving local

identification is seen in various studies, including McConnell and Phipps (1987), Iskrev

(2010), Qu and Tkachenko (2012), Milunovich and Yang (2013), and Gospodinov and Ng

(2015). Using Proposition 2, we can now establish an identification theorem for the random

coefficients demand model with an unobserved market size.

Theorem 2. Under Assumptions 2 and 3, if the rank of

E

[
φj(Zt)

∂δjt(Nt,Mt, X
(2)
t ; γ, σ)

∂γ′
φj(Zt)

∂δjt(Nt,Mt, X
(2)
t ; γ, σ)

∂σ′
φj(Zt)X

′
jt

]
is dim(θ) at θ0, then θ is locally identified.

Standard BLP models require a rank condition similar to the one stated in Theorem 2,

but not the same because it does not have the extra γ rows and columns in the Jacobian

matrix. These moments depend on the inverse demand function, which lacks a closed-form

expression, making it challenging to directly verify full column rank. However, we show

that the full rank condition is generally satisfied due to the high nonlinearity of the demand

system. The rank condition is testable using the test of the null of underidentification

proposed by Wright (2003).
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3.2.1 Sufficient Conditions for Identification

We replace the high-level rank condition with some low-level conditions on instruments. Our

identification theorem imposes an assumption regarding the rank of the Jacobian matrix.

This rank condition will generally hold because the total derivative of the demand system

(8) with respect to parameters exhibits independent variation. To verify the rank of the

Jacobian matrix, we calculate the derivatives of hjt(θ). The Jacobian matrix encompasses

four sets of derivatives: derivatives with respect to γ1, γ2, σ and β, respectively. By utilizing

the implicit function theorem for a system of equations (Sydsæter et al. 2008) and applying

the Cramer’s rule, the first two sets of derivatives can be explicitly computed as

J1 =
∂hjt(θ)

∂γk1

=

∣∣∣∣∣∣∣∣∣∣

∂π1t

∂δ1t

. . .
∂π1t

∂δJt
...

. . .
...

∂πJt
∂δ1t

. . .
∂πJt
∂δJt

∣∣∣∣∣∣∣∣∣∣

−1 ∣∣∣∣∣∣∣∣∣∣

∂π1t

∂δ1t

. . . π1t . . .
∂π1t

∂δJt
...

. . .
...

. . .
...

∂πJt
∂δ1t

. . . πJt . . .
∂πJt
∂δJt

∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
(π1t, · · · , πJt)′ is in the j-th column

Mγk2
kt∑

k γk1M
γk2
kt

φj(Zt),

= Ψjt

(
δt, X

(2)
t ;σ

) Mγk2
kt∑

k γk1M
γk2
kt

φj(Zt), (11)

and

J2 =
∂hjt(θ)

∂γk2

= Ψjt

(
δt, X

(2)
t ;σ

) γk1 ln(Mkt)M
γk2
kt∑

k γk1M
γk2
kt

φj(Zt) (12)

where J1 and J2 are m× 1 vectors, and Ψjt(δt, X
(2)
t ;σ) denotes the product of the first two

matrix determinants in equation (11). We emphasize its dependence on δt and X
(2)
t because

the partial derivatives of πjt with respect to δjt and δkt are functions of mean utilities and

characteristics of all products. We provide the calculation of these partial derivatives in

Appendix L. The Jacobian determinant of (π1t, · · · , πJt)′ with respect to (δ1t, · · · , δJt) is

different from zero, so the condition of implicit function theorem is satisfied.

Identification fails when two or more parameters enter the demand system in a manner

that makes it impossible to distinguish them. In such cases, the associated columns of the

Jacobian matrix become linearly dependent. For example: if Mt were independent of φj(Zt)

and all other components in the demand model, we would essentially have E(∂hjt/∂γk1) =

cE(∂hjt/∂γk2), for some non-zero constant c. This would make it impossible to separately

identify γk1 and γk2, neither could we distinguish γk1 and γj1 for j 6= k.To disentangle the

γ vector, we require some instruments that change Mt exogenously. For example, if Mt is

population, then instruments could be expansions of highways in a city.
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The third group of derivatives is

J3 =
∂hjt(θ)

∂σl
=

∣∣∣∣∣∣∣∣∣∣

∂π1t

∂δ1t

. . .
∂π1t

∂δJt
...

. . .
...

∂πJt
∂δ1t

. . .
∂πJt
∂δJt

∣∣∣∣∣∣∣∣∣∣

−1 ∣∣∣∣∣∣∣∣∣∣

∂π1t

∂δ1t

. . . −∂π1t

∂σl
. . .

∂π1t

∂δJt
...

. . .
...

. . .
...

∂πJt
∂δ1t

. . . −∂πJt
∂σl

. . .
∂πJt
∂δJt

∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
(−∂π1t/∂σl, · · · ,−∂πJt/∂σl)′ is in the j-th column

φj(Zt)

= Φjt(δt, X
(2)
t ;σ)φj(Zt),

where we let the product of the two determinants of J3 be denoted as Φjt(δt, X
(2)
t ;σ). Com-

paring J3 with J1 (or J2), the first determinant term of Φjt(δt, X
(2)
t ;σ) and Ψjt(δt, X

(2)
t ;σ)

are identical. The difference lies in the j-th column of the second determinant term, which

is (−∂π1t/∂σl, · · · ,−∂πJt/∂σl)′ for J3, and (π1t, · · · , πJt)′ for J1 and J2. Observe that the

derivative ∂πjt(δt, X
(2)
t ;σ)/∂σl and πjt(δt, X

(2)
t ;σ) are not perfectly collinear8, implying that

Ψjt(δt, X
(2)
t ;σ) is not perfect multicollinear with Φjt(δt, X

(2)
t ;σ) in general. The column

vectors of the Jacobian matrix are therefore linearly independent as long as we have a suf-

ficient number of instruments that are correlated with Ψjt(δt, X
(2)
t ;σ) and Φjt(δt, X

(2)
t ;σ),

respectively.

Lemma 1. Suppose γ is a scalar. Let φ
(1)
j (Zt) , φ

(2)
j (Zt) and φ

(3)
j (Zt) be subvectors of φj(Zt).

The rank condition for identification given in Theorem 4 is satisfied if E(φ
(1)
j (Zt)X

′
t) is non-

singular, the support of φj(Zt) does not lie in a proper linear subspace of Rdim(θ), and there

are instruments that satisfy

Cov
(

Ψjt

(
δt, X

(2)
t ;σ

)
, φ

(2)
j (Zt)

)
6= 0, (13)

and

Cov
(

Φjt

(
δt, X

(2)
t ;σ

)
, φ

(3)
j (Zt)

)
6= 0, (14)

where φ
(2)
j (Zt) is of dimension one, and φ

(3)
j (Zt) has the same dimension as σ.

Collectively, to identify market size parameters, we only require two sets of instruments:

(1) shifters of market size measures Mt, and (2) variables that provide exogenous variations

8Specifically, for the j-th column of the above matrices, we have

πjt

(
δt, X

(2)
t ;σ

)
=

∫
πjti

(
δt, X

(2)
t ;σ

)
fν(ν)dν for J1 (or J2), and

∂πjt

(
δt, X

(2)
t ;σ

)
∂σl

=

∫
πjti

(
δt, X

(2)
t ;σ

)(
x
(2)
jtl −

J∑
k=1

x
(2)
ktlπkti

(
δt, X

(2)
t ;σ

))
νilfν(ν)dν for J3.
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in quantities. In the simple case where γ2 = 0 and γ1 is a scalar, we only need the second

set of instruments, which is the same as those needed for identifying random coefficients.

Note that for standard BLP, assumptions similar to those in Lemma 1 are necessary, but we

only need instruments that satisfy condition (14). However, when γ is a vector of dimension

greater than one, we need an additional source of variation to identify elements of the γ

vector, specifically through variation in measures of market size.

Valid potential instruments that satisfy (13) and (14) are functions of exogenous product

characteristics. This means that our proposed method can be implemented without requir-

ing a new class of outside instruments over and above those commonly used in BLP models,

or any additional independent variations in data. Examples of commonly used instruments

of this type include: (i) BLP instruments, which are sums of product characteristics of other

products produced by the same firm, and the sums of product characteristics offered by

rival firms, and (ii) differentiation instruments, which are sums of differences of products in

characteristics space (Gandhi and Houde 2019). The rationale behind Gandhi and Houde’s

differentiation instruments is that demand for a product is mostly influenced by other prod-

ucts that are very similar in the characteristics space. However, the validity of differentiation

instruments depends on the symmetry property of the demand function, which has not been

shown in our model. Since the introduction of γ breaks the symmetry property that was

used to derive these instruments, we can no longer treat the outside option the same as inside

goods. Therefore, in the empirical section, we use BLP-type instruments to obtain the main

results and employ differentiation instruments as a robustness check. Another set of valid

instruments is Chamberlain’s (1987) optimal instrument, as implemented in BLP by Rey-

naert and Verboven (2014). The optimal instrument is the expected value of the Jacobian of

inverse demand function, which, in our context, is equivalent to using E(Ψjt(δt, X
(2)
t ;σ) | Zt)

and E(Φjt(δt, X
(2)
t ;σ) | Zt) as instruments.

3.3 Relevance of Instruments

Gandhi and Houde (2019) show that the relevance of instruments in BLP models can be

tested by estimating a plain logit regression on product characteristics and instruments, with

the coefficients determining the strength of these instruments. We re-define our parameters

and show that the same test of instrument relevance can be applied in our setting, for both

the random coefficients and the market size parameter.

Gandhi and Houde (2019) use λ to denote the vector of parameters that determine the

joint distribution of the random coefficients. Here we follow this notation and extend it to

include the market size parameters. Specifically, let λσ = σ, λγ1 = γ1 − 1 and λγ2 = γ2, and
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λ = (λσ, λγ1 , λγ2) be the full vector of nonlinear parameters in the model. By absorbing λγ

into the conditioning parameter vector, we rewrite equation (9) as

ξjt (Nt,Mt, Xt; θ) = δjt

(
Nt,Mt, X

(2)
t ;λ

)
−X ′jtβ. (15)

Equation (15) encompasses equation (9) and is similar to equation (4) in Gandhi and Houde

(2019). Here we have (Nt,Mt) instead of the observed market shares st in their function.

The endogenous problem arises for λσ and λγ because the inverse demand function de-

pends on quantities Nt (or market shares) of all products, and these endogenous quantities

interact nonlinearly with λσ and λγ in the inverse demand function. Therefore, we need in-

strumental variables for quantities (or market shares) of products to identify λσ and λγ. This

is the nonlinear simultaneous equations model that has been previously studied by Jorgen-

son and Laffont (1974) and Amemiya (1974). Unlike in linear models, where the strength

of instruments can be assessed by linear regression of endogenous variables on excluded

instruments, for nonlinear models, how to detect weak instruments is not obvious.

We use the method as in Gandhi and Houde (2019) to test the relevance of instruments

for identifying λσ and λγ, which we summarize here. By equation (7) in Gandhi and Houde

(2019), the reduced form of the inverse demand function E
(
δjt(Nt,Mt, X

(2)
t ;λ) | Zt

)
can be

approximated by a linear projection onto functions of instruments:

E
(
δjt

(
Nt,Mt, X

(2)
t ;λ

)
| Zt
)
≈ φj(Zt)

′α.

Definition 1 in Gandhi and Houde (2019) provides a practical method referred to as “IIA-

test” to detect the strength of the instruments by evaluating the inverse demand function

at λ = 0 (suppose the true parameters are λ0 6= 0). Evaluating the inverse demand function

at λσ = λγ1 = λγ2 = 0, we have

E
(
δjt

(
Nt,Mt, X

(2)
t ;λ = 0

)
| Zt
)

= E

(
ln

(
Njt

Mt −
∑Jt

j=1Njt

)
| Zt

)
≈ X ′jtα1 + αpP̂jt + φ−Xj (Zt)

′α2,

where P̂jt is the projection of prices on Xt and price instruments, and φ−Xj (Zt) is a subvector

of instruments excluding Xt. Note that P̂jt is constructed based on exogenous variables and

thus satisfied the mean independence restriction of Assumption 3. The regression relates the

observed product quantities to product characteristics and functions of instruments. The null

hypothesis of the test is that the model exhibits IIA preference and market shares calculated

by Njt/Mt are not mismeasured. We reject the null hypothesis when the parameter vector
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α2 in the reduced form regression is different from zero. On the other hand, when α2 is close

to zero, it indicates that the instruments are weak.

3.4 Intuition for Identification

We provide additional intuition for separately identifying γ and σ. First, we show how the

intuition for identification in a plain logit model can be applied here. Second, we provide a

brief numerical example to visually illustrate the identification.

In section 2, we show that γ is identified in a plain logit model by the exogenous variation

in Wt. Recall that Wt = Mt/N
total
t . Rewriting equation (5) gives us an alternative way of

understanding γ identification in the plain logit model:

ln
rjt
Wt

= ln γ + ln

(
exp(X ′jtβ + ξjt)

1 +
∑Jt

k=1 exp(X ′ktβ + ξkt)

)
.

The left side of the regression is observed, and it is linear in γ, but nonlinear in β. As shown

earlier, γ is identified in this regression. Same logic carries over to the random coefficients

case. For a scalar γ, we can rewrite equation (8) as

ln
rjt
Wt

= ln γ + ln

(∫
exp(X ′jtβ + ξjt +

∑
l σlxjtlνil)

1 +
∑Jt

k=1 exp(X ′ktβ + ξkt +
∑

l σlxktlνil)
fν(ν)dν

)
,

which is again linear in γ, but nonlinear in β and σ. We can exploit the same nonlinearity

as in the simple logit case to distinguish γ and (β, σ).

3.4.1 A Numerical Illustration

For the numerical illustration, we consider a model that has only one nonlinear parameter

σ. The utility to consumer i for product j in market t is Uijt = σνiXjt + ξjt + εijt, and

the market size is parameterized by a single scalar γ. Equation (8) can be written as
Njt
γMt

=
∫ exp(ξjt+σνiXjt)

1+
∑J
k=1(ξkt+σνiXkt)

fν(ν)dν.

If we do not have any additional conditional moment restrictions, γ is not point identified.

To see this, recognize that for a given wrong value γ̃, one can construct a corresponding wrong

ξ̃jt that fits equally well by letting ξ̃jt be given by
Njt
γ̃Mt

=
∫ exp(ξ̃jt+σνiXjt)

1+
∑J
k=1(ξ̃kt+σνiXkt)

fν(ν)dν.

Put differently, for any value of γ̃, the implied ξ̃jt will adjust to set the predicted choice

probabilities equal to the observed shares Njt/γ̃Mt. That is why we need Assumption 3

E(ξjt(θ0) | Zt) = 0 to normalize the location of ξjt. Following a similar idea in Gandhi and

Nevo (2021), in Figure 2, we visually illustrate the intuition for identification and why we
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can distinguish γ and σ.

Figure 2 plots Xjt against the implied residual function ξjt(σ, γ) for different values of

(σ, γ). As depicted in Figure 2(a), there is no correlation between ξ and the X at the true

parameter values. Figure 2(b) shows that when σ is different from the truth, it exhibits a

hump-shaped correlation and Figure 2(c) shows that when γ is different from the truth, there

is a linear correlation. For the wrong σ or γ to fit the data, ξ would have to be correlated

with the instruments. Therefore once we assume that ξ is mean independent of X, we are

shutting down this channel (as in Gandhi and Nevo 2021). Only at the true parameter values

can we match the market shares. Furthermore, the graphs with wrong σ or wrong γ have

different shapes, which provide information to distinguish these two parameters.

(a) σ = σ0, γ = γ0 (b) σ > σ0, γ = γ0 (c) σ = σ0, γ > γ0

Figure 2: Intuition for Identification in Random Coefficients Logit

Notes: The figure shows a scatter plot of ξjt and the characteristics Xjt under three scenarios.
(a) σ = σ0 = 5, γ = γ0 = 1, (b) σ = 15, γ = γ0 = 1, and (c) σ = σ0 = 5, γ = 4.

3.5 Market Fixed Effects

In Appendix D we show that in a plain logit model, by including market fixed effects in the

regression, one could obtain consistent estimators of β without observing or estimating the

true market size. Here, we briefly discuss why the same approach cannot be taken in the

random coefficients case. The more detailed derivation is provided in Appendix G.

For plain multinomial logit, when the choice probabilities of all products are rescaled

by the same factor, it implies that the quality (mean utility δ) of inside goods has changed

by the same amount. These quality gaps can be captured using market dummies. In con-

trast, for random coefficients logit, the difference in choice probabilities is also driven by

consumer taste heterogeneity. Mean utilities δ alone do not pin down choice probabilities.

Consequently, when rescaling shares, the implied quality gap varies across alternatives, de-

pending on individual heterogeneous preferences. Market fixed effects cannot fully capture

this additional preference variation.
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4 Extensions

4.1 Nonparametric Random Coefficients

In this section we show that identifying and estimating market size in the form of γMt can

be equivalent to nonparametric identification and estimation of a peculiar form of random

coefficients. It is in this unusual sense that one may rationalize the belief that random

coefficients can compensate for failure to correctly observe market size. More specifically,

consider a model with indirect utility given by equation (6) and βi ∼ F (β) follows an

unknown distribution. Identifying and estimating F (β) can be done nonparametrically.

Following the approach of Fox, Kim, and Yang (2016) (Example 1 in their paper), using a

sieve space approximation to the distribution of random coefficients, we can write

πjt(δjt;σ) =
R∑
r=1

σr
exp (δjt +

∑
l η

r
l xjtl)

1 +
∑Jt

k=1 exp(δkt +
∑

l η
r
l xktl)

(16)

with restrictions
R∑
r=1

σr = 1 and 0 ≤ σr ≤ 1,

where ηl = (η1
l · · · ηRl ) is a fixed grid of values chosen by researchers. Parameters to be

estimated are the weights σ = (σ1 · · ·σR). The associated maximum likelihood estimator

was originally proposed for estimation with individual choice data. Here instead we apply

this approach in a BLP setting where only aggregate level data is available.

Consider a special case where there are only two types of consumers (R = 2), and we

identify the probability mass of each type of consumer. Suppose, without loss of generality,

that only the constant term has a random coefficient. Let η1 = −∞ and η2 = 0 (any values

other than 0 would be absorbed into the constant term of δ). The model reduces to

πjt(δjt;σ) = σ2
exp (δjt)

1 +
∑Jt

k=1 exp(δkt)
,

where the equality follows from η1 = −∞ and η2 = 0. Note that σ2 plays the same role as

the scalar γ discussed in section 2 for the simple logit model. This result can be extended to

R > 2. If an element of η is −∞, it implies that certain consumers will never purchase any

inside goods under any circumstances. These consumers should not be considered potential

consumers and should be excluded from the measure of market size. In general, the most

flexible model of this kind can be approximated by a distribution with a probability mass

at negative infinity. Estimating random coefficients in this way allows for flexible consumer
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tastes and accounts for the unobserved market size of the form γMt.

Nonparametric random coefficients can address the unknown market size issue if the

distribution follows the specified form. This might be where the intuition that random co-

efficients can partially resolve the problem originates. In a standard BLP model (7) with

the common distributional assumption ν ∼ N(0, 1), since the normal distribution has un-

bounded support, if the estimated value of σ̂ in model (7) is large, a random draw νi with

a large negative value from the normal distribution can result in σ̂νi approaching negative

infinity, similar to η1 = −∞.

Identification of random coefficients distribution of this particular type (one that has a

probability mass point at negative infinity) would require strong assumptions. In the lit-

erature on nonparametric identification of random coefficients for aggregate demand, Berry

and Haile (2014) and Dunker, Hoderlein, and Kaido (2022) prove identification of random

coefficients without any restriction on the distribution (i.e., allow for infinite absolute mo-

ments). However, both require full/large support of product characteristics or prices (e.g.,

Assumption 3.3(i) in Dunker, Hoderlein, and Kaido 2022).

Moreover, estimating the random coefficients distribution using a sieve space approxima-

tion might not be feasible in the BLP setting. While Wang (2022) proposes a sieve BLP

estimation for aggregate demand, the implementation differs significantly from the approach

in Fox, Kim, and Yang (2016), and the choice probability cannot be expressed in the form

of equation (16). Furthermore, sieve BLP requires the number of instruments to be at least

the number of parameters, which corresponds to the dimension of the sieve space (unless we

have a moment condition for each j instead of pooling across products, like in Wang 2022).

This suggests that an unfeasibly large amount of instruments would be required.

4.2 Nonparametric Identification of Market Size

Under stronger conditions, the parametric model of market size we have considered can be

extended to a more general specification where the true market size is an unknown function

of the vector of measures Mt ∈ RK . For the moment, we consider the plain logit setting.

We replace the model of true market size with s(Mt), where s(·) is an unknown function.

Under this assumption, the estimating equation becomes

ln (rjt) = ln

(
s(Mt)

N total
t

− 1

)
+X ′jtβ + ξjt,

which is a partially linear regression with an endogenous nonparametric part studied by Ai

and Chen (2003) (see also Newey and Powell 2003 and Chen and Pouzo 2009; see Robinson
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1988 for an exogenous nonparametric part). Implicitly, we allow market size measures to

be endogenous in the sense that E(Mtξjt) 6= 0. Identification of β and s(·) can be achieved

by imposing assumptions similar to those in Ai and Chen (2003). We summarize it in the

following theorem.

Theorem 3. Let Λb
c(·) = {g ∈ Λb(·) : ‖g‖Λb ≤ c <∞} be a Hölder ball with radius c, where

‖g‖Λb is the Hölder norm of order b. Let Yt = (N total
t ,Mt), Zjt = (Xjt, Qt), and dim(Qt) =

dim(Yt) = K + 1. Suppose the following hold: (i) E(ξjt | Zjt) = 0; (ii) The conditional

distribution of Yt given Zjt is complete; (iii) s(·) ∈ Λb
c(R

K); (iv) E
(

ln
(
s(Mt)

Ntotal
t
− 1
)
| Zjt

)
/∈

linear span(Xjt), and E
(
XjtX

′
jt

)
is non-singular. Then β and s(·) are identified.

The proof follows from Newey and Powell (2003) and Proposition 3.1 in Ai and Chen

(2003), relying on the completeness of the conditional distribution9. Ai and Chen (2003)

propose a sieve minimum distance estimator to estimate β and s(·). By restricting the

unknown function to a Hölder space, the function is smooth and one can approximate it

using a wide range of sieve basis.

4.3 Identification With a Nonparametric Demand Model

The identification and estimation in sections 2 and 3 are based on parametric demand models

with logit error terms and known distribution of the random variable ν. However, in some

applications, these distribution assumptions on individual tastes may appear to be arbitrary

and relatively strong. Thus, we generalize our results to a fully nonparametric model of BLP

in the spirit of Berry and Haile (2014) to accommodate less restrictive consumer preferences.

The demand system is as equation (8), but with an unknown function πt(·) replacing the

regular logit formula and an unknown function s(·) being the true market size, yielding

Njt

s(Mt)
= πj

(
δt, X

(2)
t

)
, j = 1, · · · , J. (17)

Our result is that under a stronger exogeneity condition, (1) the market size function s(·)
can be identified up to scale, without even knowing the whole demand model, and (2) the

rest of the demand model can be identified nonparametrically.

Theorem 4. Assume that Mt is continuously distributed, and is independent of (ξt, Xt).

Assume that s(m) is differentiable in m. Then s(m) = e
∫
g(m)c̃ is identified up to a constant

c̃, where g(m) = ∂E(ln(Njt) | m)/∂m.

9See Lehmann and Romano (2005) for the concept of statistical completeness. Andrews (2017) provides
examples of distributions that are complete.
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To illustrate how we gain identification of γ from outside of the demand model, we first

consider a market size model of the form Mγ2
t . Taking log on both sides of the demand

equations, we have ln (Njt) = γ2 ln (Mt) + ln(πj(δt, X
(2)
t )). Given that Mt is independent of

ξt, Xt, and thus independent of δt and X
(2)
t , we have the following conditional expectation

E (ln(Njt) |Mt) = γ2 ln(Mt) + E
(

ln
(
πj(δt, X

(2)
t )
))

,

from which we can identify γ2 by construction: that is, γ2 = ∂E (ln(Njt) |Mt = m)/∂ ln(m).

When taking derivative with respect to ln(Mt), the demand function term πj drops out

because of the assumption that the market size measure Mt is exogenous. It means that if

the observed Njt increased more than double as we double Mt, the true market size must

be growing at an increasing rate in Mt. Moreover, we can use these estimates to test the

specification of the market size model, e.g., testing if a linear model of market size holds,

without estimating the whole BLP model.

A second example is when the true market size takes the form of M1t + γ1M2t. Under

the same assumption that Mt is independent of ξt and Xt, we can identify γ1 by γ1 =

(∂E(ln(Njt) |M1t = m1,M2t = m2)/∂m2) /(∂E(ln(Njt) |M1t = m1,M2t = m2)/∂m1) .

After establishing point identification of market size, the empirical shares on the left hand

side of equation (17) are identified. It would suffice to impose assumptions made in Berry

and Haile (2014) to obtain nonparametric identification of the demand model.

5 Empirical Application: A Merger Analysis

Market size plays a crucial role in merger analysis. The analysis of unilateral effects hinges on

whether an increase in the price of one product will lead consumers to choose an alternative

in the market; also important is whether the consumer will divert to an outside option.

Throughout this section, we assume that firms are under a static Nash-Bertrand pricing

game. As we show in Appendix I, market shares (or market sizes) used in estimation not

only affect estimates of marginal effects (β′s) but also enter firms’ first-order conditions for

pricing. Thus, assumptions about market size can influence firms’ markup and consumer

surplus. The formal pricing conditions of the firm’s problem are provided in Appendix I.

Suppose there are two firms each producing a single product. According to Pakes (2017),

the upward pricing pressure (UPP) of good 1 depends on the substitution between good 1

and good 2, as well as the markup of good 2. The size of the outside market matters for a

firm’s optimization problem and, therefore, has a substantial effect on the estimated markup.

More generally, in mergers involving multiple firms and products, the strategic complements
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result in all market participants increasing their prices, which in turn generates substitution

to the outside option.

Intuitively, if the market size used in estimation is larger than the true size, the diversion

to the outside option tends to be overstated. In the case of a merger, overestimating the

outside option diversion suggests that the merged firm would maintain a relatively low price

to prevent consumers from switching to the outside alternative. For example, Weinberg

and Hosken (2013) study the breakfast syrup and motor oil industries using a plain logit

model and demonstrates that simulated price changes decrease as the potential market size

increases.

In this section, we apply our method to analyze the price effects of a hypothetical merger

in the Carbonated Soft Drink (CSD) market. In Appendix K, we have a second merger

analysis in the Ready-to-Eat Cereal market showing that our method works in different

empirical contexts.

5.1 Carbonated Soft Drink (CSD) Market

The soft drink market has received significant attention in the literature, primarily driven

by health and regulatory concerns. The conventional discrete choice model remains a widely

used approach in modeling consumer purchasing behavior in this field of research.

The soft drink market is suitable for our study due to three key factors. First, the existing

literature lacks a consensus on how to define market size. It is measured either by multiplying

the population by the potential maximum soft drinks consumption (Eizenberg and Salvo 2015

assumed the constant to be six liters per week), or by multiplying the population by the per

capita consumption of non-alcoholic beverages (as in Lopez and Fantuzzi 2012, Liu, Lopez,

and Zhu 2014; Lopez, Liu, and Zhu 2015; Liu and Lopez 2016; and Zheng, Huang, and

Ross 2019). In the former case, the maximum weekly consumption can only be justified by

considering consumer behavior, while for the latter case, it is not obvious which non-alcoholic

beverages should be regarded as outside alternatives10.

Second, this industry is one where we generally believe the outside option is not too

large. Our simulation findings suggest that our method achieves stronger identification in

cases where the true choice probability of the outside option is not excessively large. While we

do not observe the true outside share ex-ante, we argue that goods with frequent purchases

tend to have a relatively small outside market. To see why, consider an extreme scenario

10When one uses individual purchase data, the analogous definitions of market size could be slightly
different. For example, Marshall (2015) assumes the choice of outside options occurs when a trip is completed
without the purchase. Bonnet and Réquillart (2013) assume a narrower outside option, which is observed
choices of alternative beverages.
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where the prices of all soft drink products drop to zero. Consumers who never consume soda

will not suddenly enter the market, even if the products are free, whereas soda drinkers are

already regular purchasers. Therefore, we would not anticipate a significant increase in total

sales, indicating that the potential consumption in the market is not exceptionally large11.

The third reason for applying our method to the soda market is the occurrence of several

horizontal mergers in the soft drink industry in recent years. For example, in 2018, the

Coca-Cola Company acquired Costa Coffee, and PepsiCo acquired SodaStream in the same

year.

5.2 Data

We use a panel of weekly scanner data from Nielsen for our analysis. The Nielsen scanner

data provides comprehensive information on prices, sales, and product attributes, including

package size, flavor, and nutritional contents. The dataset covers 202 designated market

areas (DMAs) in the US and spans 52 weeks, encompassing the period from January 2019

to December 2019. We aggregate the dataset from the retailer level to the market level.

Consistent with the literature, we define a market as a combination of a specific DMA and

week, resulting in a total of 10504 DMA-week markets12.

In addition to the Nielsen data, we augment our dataset with input price information,

which serves as excluded price instruments. This includes raw sugar prices from the US

Department of Agriculture, Economic Research Service; local wage from the U.S. Bureau of

Labor Statistics; as well as electricity and fuel prices from the US Department of Energy,

Energy Information Administration.

Following Eizenberg and Salvo (2015), we aggregate flavors and products in different

sized packages into 15 brand-groups, denoted as j = 1, · · · , 15 (e.g., Coca-Cola Cherry

12-oz and Coca-Cola Original 16.9-oz are treated as the same brand). Following Dubé

(2005), we consider diet and regular drinks as separate brands due to their distinct target

demographics and separate advertising and promotion strategies within the industry. These

brand categories include 11 brands owned by the three leading companies. The 12th and

13th brand categories represent aggregate private label (PL) brands for regular and diet

drinks, respectively. To account for numerous niche brands (each with a volume share below

1 percent), we aggregate them into the 14th and 15th brand categories for regular and diet

drinks, respectively. By doing so, we implicitly assume that product differentiation among

11In contrast, the airline market is an example where the outside market can be substantial, reaching as
high as 99%. For instance, if all airline tickets become free, there would likely be a surge in demand for
airline flights.

12We drop markets with extremely large or small sales relative to their respective populations, leaving us
with 9, 658 markets.
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these small brands is not of importance in the context of our study. We limit our sample

to soft drinks sold in package types that have substantial sales, specifically including the

12-pack of 12-oz cans, 67.6-oz bottle, 6-pack of 16.9-oz bottles, 20-oz bottle, and 8-pack of

12-oz cans. These five package sizes dominate in terms of volume sales compared to other

package types.

Table 1 shows volume shares of the carbonated soft drink category for each firm averaged

across DMAs. These shares represent the volume sold of brands produced by a specific

manufacturer divided by the total volume sold in the entire carbonated soft drink category.

The brands from the largest manufacturer hold a share of 35.07 percent.

5.3 Demand Model

As in section 3, the indirect utility of consumer i in market t from consuming brand j is

given by

Uijt = δjt + σνiPjt + εijt.

The term δjt denotes a market-specific, individual-invariant mean utility from brand j:

δjt = X ′jtβ + αPjt + ξjt. The vector Xjt includes in-store presence, brand fixed effects,

seasonal effects and region fixed effects. In-store presence is measured by the proportion

of stores within a market that carry a particular brand. Brand fixed effects capture the

time invariant unobserved product characteristics, while seasonal effects capture temporal

demand fluctuations. Pjt represents the price of brand j, and ξjt denotes demand shocks

specific to a brand-market combination, observable to consumers but unobservable to the

econometrician. The second term σνiPjt introduces consumer heterogeneity. νi follows a

standard normal distribution. Finally, the utility function includes the term εijt, represent-

ing consumer and brand-specific shocks that follow the Extreme Value Type I distribution

and are iid across consumers, brands, and markets13.

One issue is that in-store presence could be endogenous due to correlation with the

unobservables ξjt. We address this potential endogeneity concern by flexibly controlling for

brand-, quarter- and region-specific fixed effects. With a rich set of fixed effects included,

the unobservables that remain are brand-region specific demand shocks that vary by time.

We assume retailers or firms do not observe these demand shocks when making product

assortment decisions. It is worth noting that in-store presence has been used as an exogenous

covariate in previous studies such as Eizenberg and Salvo (2015). Similarly, in the airline

13One thing worth noting is that because each consumer i can appear more than once in a week, the
assumption that εijt is independent across i might be violated. However, assuming independence is standard
in the literature, and we think random coefficients partly account for correlation for a consumer. Therefore,
in our analysis, we will not deal with correlation in ε.
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industry, carrier presence is often considered as an exogenous attribute. The economic

interpretation of in-store presence in our context aligns closely with carrier presence in the

airline market. Just as carrier presence may raise concerns of endogeneity, it has typically

been addressed through via fixed effects.

Table 2 provides summary statistics for prices and in-store presence in the dataset. The

prices and in-store presence are averaged across all UPCs within each brand, weighted by

the volume sales of UPCs. The last three columns of Table 2 show the percentage of variance

explained by brand, DMA, and month dummy variables. The results indicate that a majority

of the variation in prices and in-store presence is attributed to differences between brands.

After we account for this brand-level variation, the remaining variation is primarily driven

by disparities across geographic areas.

5.4 Market Size Definition

We define one serving of soft drink as 12 ounces. In calculating the market share of the

outside good, Eizenberg and Salvo (2015) assume a potential weekly consumption of 6 liters

(approximately 17 servings) per household. Similarly, Zheng, Huang, and Ross (2019) use

as γ the documented average per capita consumption of non-alcoholic beverages, including

CSDs, water, juice, tea and sports drinks. The average consumption is around 30 ounces

per person per day, equivalent to 17.5 servings per week. Other studies, such as Lopez and

Fantuzzi (2012), Liu, Lopez, and Zhu (2014), Lopez, Liu, and Zhu (2015), and Liu and Lopez

(2016), also utilize per capita consumption of non-alcoholic beverages as a proxy for market

size. The specific proportional factor varies depending on the inclusion of different beverages

as outside options. For example, Liu, Lopez, and Zhu (2014) include milk consumption,

while Zheng, Huang, and Ross (2019) do not. The per capita weekly consumption of non-

alcoholic beverages in Liu, Lopez, and Zhu (2014) reaches as high as 32 servings, nearly

double the amount used in Zheng, Huang, and Ross (2019).

These choices of market size are somewhat subjective. Eizenberg and Salvo (2015) have

shown that their results are not qualitatively sensitive to the market size assumption. How-

ever, in alternative counterfactual exercises like merger simulations, the market size assump-

tion could play a more substantial role. It is important to note that Eizenberg and Salvo

(2015) use the scanner data from Brazil, while our study employs US data. Therefore, the

assumed value of γ = 17 may be more appropriate for their dataset14.

14Another distinction between Eizenberg and Salvo (2015) and other papers that use the US data is that
the market size in Eizenberg and Salvo (2015) is calculated based on the number of households, whereas
others use the population. Here, we adopt the population measure. A potential market size of 17 servings
per household is smaller than 17 servings per capita.
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The market size assumptions can be expressed in our notation as γMt, where Mt rep-

resents the total population in a DMA area. Throughout this section, all comparisons will

be made with regard to assuming γ = 17 servings15. Specifically, we estimate γ along with

other demand parameters and calculate elasticities and diversion ratios. We then simulate

the merger using two potential market sizes: one assumes a market size of 17 servings per

week, and the other assumes a market size of γ̂ servings per week.

5.5 Instruments

To address the likely correlation of the demand errors ξjt with prices, as well as identify the

random coefficients and market size parameters, we employ three sets of instruments. The

first two sets are standard excluded instruments suggested by Berry and Haile (2014) and

have been widely used in empirical studies (e.g. Eizenberg and Salvo 2015; Petrin and Train

2010; and Nevo 2001).

The first set of price instruments belongs to the Hausman-type instrument, proposed by

Hausman, Leonard, and Zona (1994). Specifically, the instrument for the price of brand j

in a given DMA is the average price of this brand in other DMAs belonging to the same

Census Region. These instruments provide variation across brands and DMAs, and are valid

due to the correlation of prices across geographic regions through a common cost structure.

However, the Hausman-type instruments could be problematic if demand unobservables are

correlated across markets (e.g., launching a national campaign). To lessen this concern,

we control for DMA-specific, brand-level in-store presence, which partially absorbs common

demand shocks.

The second class of price instruments consists of cost shifters. Specifically, we use input

prices such as electricity prices, fuel prices and local wages. These cost shifters are excluded

from the demand equation but affect prices through the supply side.

The third set of instruments serves to identify random coefficients and market size pa-

rameters. Here we use the traditional BLP type instruments. Specifically, they involve sums

over exogenous characteristics of brands produced by the same company and sums over rival

brands. We construct this class of instruments based on in-store presence and fitted values of

prices. The fitted values of prices are obtained by regressing prices on Xjt and excluded price

instrument. The projection of prices on exogenous variables would be mean independent of

the unobservables ξjt. This exogenous variation in price facilitates the identification of the

parameters associated with heterogeneity in price sensitivity. As a robustness check, we also

use the differentiation instruments proposed by Gandhi and Houde (2019)

15We use 17 servings per week only as a baseline level to be compared to. It could be any other numbers.
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To see why our constructed instruments (based on in-store presence16) identify market

size, consider a scenario where the in-store presence of 7Up increases. This change, possibly

due to supply side factors like reduced transportation costs or the establishment of a new

distribution hub, results in consumers encountering 7Up more frequently on store shelves.

With this change in the physical environment of retail stores, we would observe consumers

switching from alternative drinks and outside option to 7Up. Assuming all other factors

remain constant, if we observe a substantial decrease in Sprite sales without an increase in

overall soda consumption, it suggests a small potential market size, because little changes

are from the extensive margin.

5.6 Results

Table 3 reports five sets of demand model estimates. The first two columns correspond

to plain logit and random coefficients logit models, where γ is estimated along with other

demand parameters. Columns 3 to 5 are standard BLP estimates assuming γ = 17. Column

3 replicates the specification of column 2, while column 4 introduces an additional random

coefficient on the constant term to capture unobserved preferences for the outside option.

In column 5, DMA-week specific fixed effects are included. The strength of instruments,

measured by the F-statistic of an IIA-test (as discussed in section 3.3), is 2819 with a p-

value of 0.00, rejecting the null hypothesis of weak instruments.

The estimated values of γ are 12.478 and 11.767 for the plain logit and random coeffi-

cients logit models, respectively17. These estimates are lower than the range assumed in the

literature (between 17.5 and 32), suggesting that a market size defined based on per capita

consumption of all non-alcoholic beverages may be too large. It implies that not all beverage

categories should be considered as outside alternatives to soda18.

In columns 1 and 2 of Table 3, the estimated price sensitivities are −8.748 and −9.86.

The estimate of random coefficient parameter σ in column 2 is 1.952 and is statistically

significant, indicating a rejection of the plain logit model. Column 3, assuming γ = 17,

exhibits higher price sensitivity (−13.033) and a larger standard deviation (4.395) in the

16If stores make assortment decisions after the realization of all demand shocks (as assumed in Ciliberto,
Murry, and Tamer 2021), fixed effects may not fully address the endogeneity of in-store presence. As an
alternative, though not explored in this paper, one can use exogenous changes in soda taxes as instruments.

17To verify that the estimated γ achieves global minimum for the random coefficients logit model, in
Appendix J we plot the GMM objective function over a grid of values for γ. The figure suggests that there
are no multiple minima within the specified interval. However, the function is not steep around the minimum,
which could pose challenges for numerical optimization.

18In 2019, the soft drink consumption per person per week in the US is approximately 107 ounces, or 8.9
servings. See: https://www.ibisworld.com/us/bed/per-capita-soft-drink-consumption/1786/. This
reassures that our estimated value of potential consumption, which amounts to 12 servings, is reasonable.
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preference for price. This aligns with what one would expect when assuming a larger potential

market size. Column 4, which includes a second random coefficient on the constant term,

produces estimates comparable to column 3. The estimate of σ for the constant term is

small in magnitude −0.09 and statistically insignificant. In the last column, with market

fixed effects, the estimate of price sensitivity is much lower. Precisely estimating σ becomes

challenging, with extremely large standard errors, which is expected due to the inclusion of

near 10, 000 dummy variables in the GMM estimation. Therefore, there is limited exogenous

variation to identify the random coefficient.

Table 4 provides estimated own-price elasticities and outside-good diversion ratios. Col-

umn 1 reports the elasticities based on our estimate of γ̂ = 12. The own-price elasticities

range from −3.651 to −1.887, which is consistent with previous literature19. Note that PLs

have lower own-price elasticities compared to other brands. This can be attributed to PLs

being composite brands consisting of numerous niche products. The demand for an entire

category are expected be less elastic than for each individual product. Furthermore, Steiner

(2004) and Hirsch, Tiboldo, and Lopez (2018), find that PLs face relative inelastic demand

due to limited interbrand substitution within a store. The outside-good diversion ratios

exceed 60% for all brands, with PLs exhibiting the highest diversion ratio. This indicates

that when faced with a price increase, iconsumers are more likely to cease purchasing rather

than switch to branded alternatives, which is what one would expect to see if there exists a

high degree of store loyalty.

The remaining columns in Table 4 are based on estimates from columns 3 to 5 of Table

3. Assuming γ = 17 when the true value is γ = 12, the biases in own-price elasticities are

small. However, the biases in outside diversion ratios are more substantial, with a difference

of 9 percentage points for PLs and approximately 3 to 4 percentage points for other brands,

indicating even less substitutions across brands. Including a second random coefficient on

the constant term yields results similar to those in column 2. This is mainly due to the

fact that the estimated σ for the constant term is not significantly different from zero.

The inclusion of market fixed effects leads to slightly lower own-price elasticities and higher

outside diversion ratios. Although the results with market fixed effects are comparable to

our estimates, the standard error of the random coefficient estimate is so large that we can

not conclude any statistically significant results. The key takeaway from Table 4 is that none

of the commonly employed solutions produce elasticities and diversion ratios close to those

obtained using our estimated market size. Additionally, we provide estimates of aggregate

19For example, the estimated own-price elasticities in Dubé (2005) are in the range of −3 to −6. Lopez,
Liu, and Zhu (2015) report elasticities between −1 and −2. The magnitude of elasticities varies with the
aggregation level of product.
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elasticities in Appendix J, which allow one to assess the impact of hypothetical soda taxes.

Finally, we simulate a merger between the largest manufacturer and private label man-

ufacturers. Our merger simulation abstracts away from cost reduction, or changes in the

model of competition (e.g. coordination between other firms). Table 5 shows the percentage

change in prices for the merging products. In column 1, the estimates (approximately 2.22%

to 8.41% price increases) are reasonably comparable to those of Dubé (2005), who estimated

the price effect after a simulated merger between two leading manufacturers. The merger

simulations predict larger price increases for the PLs than products of the leading manufac-

turer. This results from the relatively lower own-price elasticities of PLs, and is consistent

with previous findings on higher pricing margins for PLs.

In columns 2 and 3, which assume γ = 17, the price effects of the merger for brands owned

by the merging parties tend to be underestimated. The bias is the most pronounced for PLs.

Simulated price increases are approximately 8 percent when the market size parameter is

estimated to be 12, while assuming γ = 17 yields a price increase of 5.5 percent, biased by

31%. For brands from the leading manufacturer, the simulated price effects are relatively

lower with the assumed γ = 12, although we acknowledge that the differences are not

economically significant. In the last column, the estimate is relatively closer to our estimates

but is imprecisely estimated with large standard errors.

In summary, both the diversion ratios and merger simulations generated by different

market sizes vary and may lead to different policy evaluations. As the potential market size

increases, the simulated price changes display a monotonic decrease.

6 Additional Results

The online supplemental appendix to this paper contains additional theoretical results, an-

other empirical application, proofs of Theorems, and an extensive set of Monte Carlo exper-

iments.

Some additional technical results include deriving the direction of bias, adding errors to

the market size specification, identifying market size in a nested logit model, analyses of

model identification with market fixed effects, and identification with a Bernoulli distributed

random coefficient. There are also extra results for the CSD application, including price

elasticities of market demand, which is useful in evaluating a simulated soda tax. The

appendix also presents a second empirical analysis in the ready-to-eat cereal market to verify

the method’s applicability to different empirical contexts.

Three Monte Carlo experiments are conducted. The first evaluates whether random

coefficients remove bias induced by incorrect market size assumptions. The second explores
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how sensitive parameter estimates and elasticities are to market size assumptions in a random

coefficients logit model. The third experiment assesses the performance of our proposed

method. Simulation results suggest that our estimator works well, particularly when the

true outside good share is not too large.

7 Conclusions

This paper shows that market size is point identified in aggregate discrete choice demand

models. Point identification relies on observed substitution patterns induced by exogenous

variation in product characteristics and the nonlinearity of the demand model. The required

data are conventional market-level data used in standard BLP estimation. We illustrate

the results using Monte Carlo simulations and provide an empirical application to merger

analysis in the soft drink industry. Our application shows that correctly measuring market

size is economically important. For instance, we find that assuming a market size larger

than the true size leads to a non-negligible downward bias in the estimated merger price

increase, which could affect the conclusions of the merger evaluation. Apart from the merger

application, our results would also have important implications for social welfare, markup

calculations, tax and subsidy policies, and the entry of new firms.

Potential areas for future theoretical research include deriving conditions for strong iden-

tification and instrument selection, extending the model to micro-BLP which uses individual

choice data, and allowing for dependence among logit errors to make the results applicable

to panel data settings as in Khan, Ouyang, and Tamer (2021).

In our application, we consider a scalar γ. A possible extension would be to allow γ

to vary based on market characteristics, such as demographic composition and the number

of retail stores. It would also be useful to test our model in an industry where the true

market size is known, such as the pharmaceutical market, where researchers generally know

the number of patients, which can be considered as the potential market size. Another

possibility for further work is generalizing the model to empirical contexts where inside good

quantity rather than outside option is mismeasured or unknown, such as the consumption

of informal goods or services (Pissarides and Weber 1989).
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Tables

Table 1: Manufacturer-Level Volume Shares of Carbonated Soft Drink

Regular (%) Diet (%) Total (%)

Manufacturer A 22.19 12.88 35.07
Manufacturer B 12.25 6.87 19.12
Manufacturer C 7.17 2.7 9.87
Private Label 5.09 5.44 10.53
Others 13.04 12.36 25.4

Notes: Volume shares are the volume sold of a specific manufac-
turer divided by the total volume sold of the carbonated soft drink
category.

Table 2: Prices and In-store Presence of Brands in Sample

Mean Median Std Min Max Brand DMA Month
Variation Variation Variation

Prices 0.40 0.39 0.12 0.11 2.75 39.73% 39.50% 0.50%
($ per 12 oz.)
In-store Presence 0.50 0.51 0.22 0.01 1.00 75.12% 13.44% 0.06%

Notes: Variance contribution of brands, DMAs and months is the R-squared value added by
each variable when it is added to the regression of price (or in-store presence) on the other
two independent variables. In-store presence: the proportion of stores with the given brand
in stock.
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Table 3: Baseline Demand Estimation Results

Estimate γ Assume γ = 17 servings

Plain Logit RC Logit RC Logit RC Logit RC Logit
with two RC’s with Market FE

Means β
Price -8.748 -9.860 -13.033 -12.793 -5.245

(0.084) (0.222) (0.289) (0.434) (0.311)
In-store Presence 3.281 3.311 3.309 3.314 5.061

(0.022) (0.022) (0.023) (0.024) (0.019)

Standard Deviations σ
Price 1.952 4.395 4.257 0.007

(0.211) (0.155) (0.247) (53.834)
Constant -0.090

(1.189)

Market Size Parameter
γ 12.478 11.767

(0.263) (0.210)

Product Fixed Effects Yes Yes Yes Yes Yes
Seasonal Effects Yes Yes Yes Yes No
Region Fixed Effects Yes Yes Yes Yes No
DMA-Week (Market) Fixed Effects No No No No Yes

Notes: This table reports demand model estimates. Columns 1 and 2 correspond to plain logit and random
coefficients logit models, and γ is to be estimated. Columns 3 to 5 are standard BLP estimates assuming
γ = 17. Column 3 replicates the specification of column 2. Column 4 introduces an additional random
coefficient on the constant term and column 5 includes market fixed effects. Standard errors in parentheses.
Constant terms are omitted due to collinearity with product fixed effects.

Table 4: Demand Elasticities and Diversion Ratios

RC Logit RC Logit RC Logit RC Logit
with two RC’s with Market FE

with γ̂ = 12 Assuming γ = 17 Assuming γ = 17 Assuming γ = 17

Own-Price Elasticities
Product 1 -3.398 -3.362 -3.351 -2.097
Product 2 -3.597 -3.493 -3.482 -2.224
Product 3 -3.651 -3.528 -3.518 -2.262
Private Label R -1.887 -2.181 -2.151 -1.000

Outside-Good Diversion Ratios
Product 1 62.8% 66.0% 66.5% 78.5%
Product 2 60.3% 63.0% 63.5% 77.2%
Product 3 59.8% 62.4% 62.9% 77.0%
Private Label R 68.4% 77.7% 77.7% 76.9%

Notes: This table reports estimates of elasticities and diversion ratio. Columns 1 is based on a random
coefficients logit model with estimated γ. Columns 2 to 4 assume γ = 17. Column 2 replicates the
specification of column 1. Column 3 introduces an additional random coefficient on the constant term and
column 4 includes market fixed effects. To save space, only top-3 regular drink products are reported in
the table. R represents regular.
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Table 5: Simulated Percentage Price Effects for Merging Firms’ Brands

RC Logit RC Logit RC Logit RC Logit
with two RC’s with Market FE

with γ̂ = 12 Assuming γ = 17 Assuming γ = 17 Assuming γ = 17

Manufacturer A Products 2.33 1.65 1.65 2.80
2.37 1.66 1.67 2.85
2.22 1.58 1.58 2.66
2.49 1.73 1.73 3.01

Private Label R 8.41 5.64 5.66 10.14
Private Label DT 8.21 5.56 5.57 9.83

Notes: This table reports the percentage price change after a simulated merger between Manufacturer
A and private label manufacturers. Columns 1 is based on a random coefficients logit model with
estimated γ. Columns 2 to 4 assume γ = 17. Column 2 replicates the specification of column 1.
Column 3 introduces an additional random coefficient on the constant term and column 4 includes
market fixed effects. To save space, only merging firms’ brands are reported in the table. R represents
regular. DT stands for diet.
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A Proofs

Proof of Theorem 1. By the mean independence condition given in Assumption 1, we have

E (ln (rjt) | Qt = q,Xjt = x) = E (ln (γWt − 1) | Qt = q,Xjt = x)− x′β.

Taking derivative with respect to q yields

0 =
∂E (ln (rjt)− ln (γWt − 1) | Qt = q,Xjt = x)

∂q
.

Let Γ be the set of all possible values of γ. For any given constant c ∈ Γ, define the function

g(c, q, x) =
∂E (ln (rjt)− ln (cWt − 1) | Qt = q,Xjt = x)

∂q

We observe rjt, Wt, Qt and Xjt. For any constant c, observed q and x, we can therefore

nonparametrically identify g(c, q, x). In order to show point identification, we need to verify

that there exists at most one value of c ∈ Γ such that g(c, q, x) = 0 for all observed q ∈
Supp(Qt) and x ∈ Supp(Xjt). Taking the derivative of g(c, q, x) with respect to c, we have

∂2E (ln (rjt)− ln (cWt − 1) | Qt = q,Xjt = x)

∂c∂q
=
∂E
(
− Wt

cWt−1
| Qt = q,Xjt = x

)
∂q

.

The identification then follows from the assumption that there exists (q, x) on the support of

(Qt, Xjt) such that ∂E
(
− Wt

cWt−1
| Qt = q,Xjt = x

)
/∂q is strictly positive or strictly negative

for all c ∈ Γ.

Given γ, the model becomes equivalent to a standard multinomial choice model, and

therefore β is identified the same way.

Lemma 2 is the contraction mapping theorem in the appendix from Berry, Levinsohn,

and Pakes (1995).

Lemma 2. Consider the metric space (RJ , d) with d(x, y) = ‖x− y‖. Let g : RJ → RJ have

the properties:

(1) ∀δ ∈ RJ , f(δ) is continuously differentiable, with, ∀k and j,

∂gk(δ)

∂δj
≥ 0,
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and
J∑
j=1

∂gk(δ)

∂δj
< 1.

(2) minj infδ gj(δ) = δ > −∞.(There is a lower bound to gj(δ), denoted δ)

(3) There is a value δ, with the property that if for any j, δj ≥ δ, then for some k,

gk(δ) < δk.

Then, there is a unique fixed point δ∗ to g in RJ .

Proof of Proposition 1. The implicit system of equations is solved for each market, therefore

we drop the t subscript in the proof to simplify the notation. We show the proposition for a

scalar γ. Let sj = Nj/M and s0 = 1−
∑

j Nj/M . We obtain the generalized proposition by

replacing ln(sj/γ) with ln(Nj/
∑
γ1M

γ2) Now we show that the function g(δ) = δ + ln(s)−
ln(γ)− ln(π(δ;σ)) satisfies the three conditions in Lemma 2.

(1) The function g(δ) is continuously differentiable by the differentiability of the predicted

choice probability function π(δ;σ).

First we want to show that

∂gj(δ)

∂δj
= 1− 1

πj(δ;σ)

∂πj(δ;σ)

∂δj
≥ 0

Take the derivative of πj(δ;σ) with respect to δj, we have

∂πj(δ;σ)

∂δj

=

∫ exp(δj +
∑

l σlxjlνil)
(

1 +
∑Jt

k=1 exp(δk +
∑

l σlxklνil)
)

(
1 +

∑Jt
k=1 exp(δk +

∑
l σlxklνil)

)2

− (exp(δj +
∑

l σlxjlνil))
2(

1 +
∑Jt

k=1 exp(δk +
∑

l σlxklνil)
)2fν(ν)dν

=

∫
exp(δj +

∑
l σlxjlνil)

1 +
∑Jt

k=1 exp(δk +
∑

l σlxklνil)
−

(
exp(δj +

∑
l σlxjlνil)

1 +
∑Jt

k=1 exp(δk +
∑

l σlxklνil)

)2

fν(ν)dν

= πj(δ;σ)−
∫ (

exp(δj +
∑

l σlxjlνil)

1 +
∑Jt

k=1 exp(δk +
∑

l σlxklνil)

)2

fν(ν)dν
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Then we can rewrite the derivative of function gj(δ) as

∂gj(δ)

∂δj
= 1− 1

πj(δ;σ)

∂πj(δ;σ)

∂δj

=
1

πj(δ;σ)

∫ (
exp(δj +

∑
l σlxjlνil)

1 +
∑Jt

k=1 exp(δk +
∑

l σlxklνil)

)2

fν(ν)dν,

which is non-negative because πj(δ;σ) is strictly positive, and the integrand of the sec-

ond term is continuous and strictly positive, hence the integral over any closed integral

is strictly positive, so the same must hold over the entire real line.

Take the derivative of π(δ;σ) with respect to δj, we have

∂πk(δ;σ)

∂δj
= −

∫
exp(δk +

∑
l σlxklνil)exp(δj +

∑
l σlxjlνil)(

1 +
∑Jt

k=1 exp(δk +
∑

l σlxklνil)
)2 fν(ν)dν.

Therefore the derivative of gk(δ) with respect to δj is

∂gk(δ)

∂δj
= − 1

πk(δ;σ)

∂πk(δ;σ)

∂δj

=
1

πk(δ;σ)

∫
exp(δk +

∑
l σlxjlνil)exp(δj +

∑
l σlxjlνil)(

1 +
∑Jt

k=1 exp(δk +
∑

l σlxklνil)
)2 fν(ν)dν,

which is non-negative because πk(δ;σ) and the integrand of the second term are strictly

positive.

To show the condition
∑J

j=1 ∂gk(δ)/∂δj < 1, note that increasing all the δj including δ0

simultaneously will not change the market shares, implying that
∑J

j=0 ∂πk(δ;σ)/∂δj =

0. Then
J∑
j=1

∂πk(δ;σ)

∂δj
= −∂πk(δ;σ)

∂δ0

> 0

We can therefore establish the condition that the derivatives of gk sums to less than

one
J∑
j=1

∂gk(δ)

∂δj
= 1− 1

πk(δ;σ)

J∑
j=1

∂πk(δ;σ)

∂δj
< 1.

4



(2) Rewrite gj(δ) as

gj(δ) = ln(sj)− ln(γ)− ln (Dj(δ)) ,

where Dj(δ) =

∫
exp(

∑
l σlxjlνil)

1 +
∑Jt

k=1 exp(δk +
∑

l σlxklνil)
fν(ν)dν.

A lower bound of gj can be obtained by letting all of δk go to −∞, then Dj(δ) →∫
exp(

∑
l σlxjlνil)fν(ν)dν. So the lower bound on gj(δ) is

δ ≡ ln(sj)− ln(γ)− ln

(∫
exp(

∑
l

σlxjlνil)fν(ν)dν

)

(3) The proof of this part follows Berry (1994). He shows condition (3) of Lemma 2 is

satisfied by first showing that if for any product j, δj ≥ δ, then there is at least one

element k with πk(δ;σ) > sk/γ.

To construct a δ that satisfies the above requirement, first set all of δk (other than

good j and outside good) to −∞. Define δj to be the value of δj that makes π0(δ;σ) =

1− (1− s0)/γ. Then define δ = maxj δj.

Now if there is any element of δ with δj > δ, then π0(δ;σ) < 1 − (1 − s0)/γ. It then

follows from
∑J

j=0 πj(δ;σ) = 1 that
∑J

j=1 πj(δ;σ) >
∑J

j=1 sj/γ. Thus there is at least

one good k with πk(δ;σ) > sk/γ, which implies gk(δ) < δk:

πk(δ;σ) >
sk
γ

⇐⇒ ln (πk(δ;σ)) > ln(sk)− ln(γ)

⇐⇒ ln(sk)− ln(γ)− ln (πk(δ;σ)) < 0

⇐⇒ gk(δ) = δk + ln(sk)− ln(γ)− ln (πk(δ;σ)) < δk

Proof of Theorem 2. Assuming enough regularity to take the derivative inside the expecta-

tion and applying the dominated convergence theorem, we have∇θE (hjt(θ)) = E (∇θhjt(θ)).

The Jacobian matrix is

E (∇θhjt(θ)) = E

[
∂hjt(θ)

∂γ′
∂hjt(θ)

∂σ′
∂hjt(θ)

∂β′

]
= E

[
φj(Zt)

∂δjt(Nt,Mt, X
(2)
t ; γ, σ)

∂γ′
φj(Zt)

∂δjt(Nt,Mt, X
(2)
t ; γ, σ)

∂σ′
φj(Zt)X

′
jt

]

Recall that hjt(θ) = (δjt(Nt,Mt, X
(2)
t ; γ, σ) −X ′jtβ)φj(Zt). The first derivative of the above

5



matrix is an m× 2K vector. ∂πjt(δt;σ)/∂σ′ is a 1× L row vector, so the second derivative

of the above matrix is an m × L matrix. Similarly, the dimension of the last derivative is

m× L. The identification proof follows directly from Lemma 2 and the rank condition that

the Jacobian matrix has rank K.

Proof of Lemma 1. To ease notation in the proof, we drop the subscript j and t and suppress

the dependence of Φ and Ψ on (δt, X
(2)
t ;σ), and the dependence of φ on Z. We make a

simplifying assumption w.l.o.g.: Suppose X are exogenous and thus can serve as its own

instruments, i.e. φ(1) = X. When γ is a scalar, the Jacobian matrix reduces to
E

((
φ(2)

φ(3)

)(
1
γ
Ψ

Φ

)′)
E

((
φ(2)

φ(3)

)
X ′

)

E

(
X

(
1
γ
Ψ

Φ

)′)
E (XX ′)

 ,

and recall that

A = E

((
φ(2)

φ(3)

)(
1
γ
Ψ

Φ

)′)
B = E

((
φ(2)

φ(3)

)
X ′

)

C = E

(
X

(
1
γ
Ψ

Φ

)′)
D = E (XX ′) ,

Let X = (1, X̃ ′)′. Denote Ω = (E(X̃X̃ ′)− E(X̃)E(X̃ ′))−1, then we have

D−1 =

(
1 + E(X̃ ′)ΩE(X̃) −E(X̃ ′)Ω

−ΩE(X̃) Ω

)
,

and

A−BD−1C =
1

γ

(
Cov

((
φ(2)

φ(3)

)
, (Ψ,Φ)

)
− Cov

((
φ(2)

φ(3)

)
, X̃ ′

)
ΩCov

(
X̃, (Ψ,Φ)

))

For the Jacobian matrix to have full rank, we make a technical assumption that det(A−
BD−1C) 6= 0. This assumption is generically satisfied when

Cov

((
φ(2)

φ(3)

)
, (Ψ,Φ)

)

has full rank. Note that given the regularity assumptions in the Lemma, when the above
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matrix has full rank, det(A−BD−1C) equals zero only at a set of measure zero.

Proof of Theorem 4. Assuming Mt ⊥ (ξt, Xt), we take log and conditional expectation on

both sides

E (ln(Njt) |Mt) = ln(s(Mt)) + E
(

ln
(
πj(δt, X

(2)
t )
))

.

Take derivative w.r.t. m

∂E (ln(Njt) |Mt = m)

∂m
=
∂ ln(s(Mt))

∂m
≡ g(m),

from which g(m) is identified. Then ln(s(Mt)) =
∫
g(m) + c is identified up to location.

Thus,

s(m) = e
∫
g(m)c̃

is identified up to scale.

Proof of Theorem 5. By Assumption 4, the conditional mean function is

E (ln (rjt) | Xjt = x) = κt + x′β ∀t ∈ (1, · · · , T ).

IfXjt is continuous, then ∂E (ln (rjt) | Xjt = x) /∂x = β. IfXjt is discrete, thenE (ln (rjt) | Xjt = x1)−
E (ln (rjt) | Xjt = x2) = (x1 − x2)′β. β is therefore identified given that the support of Xjt

does not lie in a proper linear subspace of Rdim(X) for t = 1, · · · , T and Xit does not contain

a constant.

Now that we have shown β is identified, the conditional mean function becomes

E (ln (rjt) | Xjt = x)− x′β = κt ∀t ∈ (1, · · · , T ).

The left hand side is identified, and each of the T equations pins down a unique κt. Therefore

(κ1, · · · , κT ) are identified.

Proof of Theorem 6. By the mean independence condition given in Assumption 1, we have

E (ln (rjt) | Qt = q,Xjt = x) =
1

1− σ
E (ln (γWt − 1) | Qt = q,Xjt = x)− x′ β

1− σ
.

Taking first-order derivative with respect to q yields

∂E (ln (rjt) | Qt = q,Xjt = x)

∂q
=

1

1− σ
∂E (ln (γWt − 1) | Qt = q,Xjt = x)

∂q
. (18)
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Taking second-order derivative with respect to q yields

∂2E (ln (rjt) | Qt = q,Xjt = x)

∂q2
=

1

1− σ
∂2E (ln (γWt − 1) | Qt = q,Xjt = x)

∂q2
. (19)

Define functions

g(q, x) =
∂E (ln (rjt) | Qt = q,Xjt = x)

∂q
,

and

h(γ, q, x) =
∂E (ln (γWt − 1) | Qt = q,Xjt = x)

∂q
.

Dividing equation (19) by (18) yields

∂g(q, x)

∂q

1

g(q, x)
=
∂h(γ, q, x)

∂q

1

h(γ, q, x)

Let Γ be the set of all possible values of γ. For any given c ∈ Γ, define function

f(c, q, x) =
∂h(c, q, x)

∂q

1

h(c, q, x)
− ∂g(q, x)

∂q

1

g(q, x)
.

We observe rjt,Wt, Qt and Xjt. For any constant c and observed q and x, we can therefore

nonparametrically identify f(c, q, x). In order to show point identification of γ, we need to

verify that there exists at most one value of c ∈ Γ such that f(cq, q, x) = 0 for all observed

q ∈ Supp(Qt) and x ∈ Supp(Xjt). Taking the derivative of f(c, q, x) with respect to c, we

have

∂f(c, q, x)

∂c
=
∂2(h(c, q, x))

∂q∂c

1

h(c, q, x)
− ∂h(c, q, x)

∂q

h(c, q, x)

∂c

1

h(c, q, x)2

=
1

h(c, q, x)

∂2E
(

Wt

cWt−1
| Qt = q,Xjt = x

)
∂q2

−

1

h(c, q, x)2

∂2E (ln(cWt − 1) | Qt = q,Xjt = x)

∂q2

∂E
(

Wt

cWt−1
| Qt = q,Xjt = x

)
∂q

.

The identification of γ then follows from the assumption that there exists (q, x) on the

support of (Qt, Xjt) such that ∂f(c,q,x)
∂c

is strictly positive or strictly negative for all c ∈ Γ.

Given a unique γ, and the assumption that h(γ,q,x)
g(q,x)

6= 0, we can solve for σ explicitly as

σ = 1− h(γ, q, x)

g(q, x)
.
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Given γ and σ, the model reduces to a standard multinomial logit model, and β/(1− σ) is

identified in a linear regression model. Given β/(1− σ) and σ, we can solve for β.

B Bias Caused by Mismeasured Market Size

We show that the usual approach that estimates demand based on equation (1) with a

mismeasured market size will lead to biased estimates of β. To see this, suppose the true

model is given by equation (5) with true value of γ 6= 1. Without loss of generality, let

sjt = Njt/Mt and s0t = (Mt −N total
t )/Mt denote the mismeasured market shares calculated

based on the incorrect assumption that market size is γ̃Mt, with γ̃ = 1. Define µjt to be

the difference between the true choice probabilities ln(πjt/π0t) and the mismeasured market

shares ln(sjt/s0t), so it gives the model that relates observed market shares to covariates and

errors

ln

(
sjt
s0t

)
= X ′jtβ + ξjt + µjt,

with

µjt = ln

(
sjt
s0t

)
− ln

(
πjt
π0t

)
= ln

(
γWt − 1

Wt − 1

)
= ln

(
1

/(
1

γ
+

(
1

γ
− 1

)
1− π0t

π0t

))
by construction. The first equality is by the definition of µjt. The second equality follows from

the definition of mismeasured market shares and equations (1) and (5). The third equality

follows from equation (4). It is not reasonable to believe that π0t would be independent

of Xjt because by the model, π0t depends on the characteristics of all goods. One possible

technique to fix the problem is using a standard 2SLS regression or GMM with appropriate

instruments. In this case, a valid instrument should be correlated with the demand covariates

Xjt, and in the meanwhile, uncorrelated with π0t, which again is a function of Xjt. In general,

it is unlikely to construct an instrument that satisfies both restrictions.

Using the relationship provided above, we can predict the direction of the bias: Suppose

that the observed market size is larger than the true size (i.e. γ < 1), the model predicts that

the price of good j will be positively correlated with µjt, and negatively correlated with its

own market share. Therefore, the estimate of the price coefficient will be biased downward

(in absolute value), implying an underestimated price sensitivity.
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C Extension of the Simple Logit Case

rjt and r∗jt are defined as in section 2. Now we assume

ln (rjt) = ln
(
r∗jt
)

+ ejt.

Here, ejt is the error in ln (rjt) that we will later assume to have mean zero. It can include

sampling errors, measurement errors, or aggregate unobserved heterogeneity in individual

utility.

Then we assume that the mismeasurement in Wt relative to π0t takes the form

ln

(
π0t

1− π0t

)
= ln (γWt − 1) + vt

for some constant γ and some random mean zero noise vt. We add the error term vt to account

for this relationship being approximate rather than exact. With the additional vt, 1 − π0t

would approximately equal 1/ (γWt), and therefore ln (π0t/(1− π0t)) would approximately

equal ln (γWt − 1).

Putting the above equations and assumptions together we get the estimating equation

ln (rjt) = ln (γWt − 1) +X ′jtβ + ujt ∀j ∈ Jt

where

ujt = ξjt + ejt + vt.

To achieve identification as in section 2, we only need to modify the mean independence

assumption such that E (ujt | Qt, X1t, . . . , XJtt) = 0, where everything else is defined as in

section 2.

D Market Fixed Effects Approach for Simple Logit

Returning to equation (5), observe that the term with the unknown π0t shows up additively,

and it varies by market, not by product. We could allow for separate intercepts for each

market to capture the unknown π0t. The inclusion of the market level intercepts allows for

unobserved aggregate market effects of the kind introduced by the presence of outside goods.

Let (κ1, · · · , κT ) denote the aggregate market-varying and product-invariant parameters,

then we can rewrite the model of equation (5) as

ln (rjt) = κt +X ′jtβ + ujt for each t = 1, · · · , T.
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Assumption 4. E(ujt | Xjt) = 0 for all t ∈ (1, · · · , T ). The support of Xjt does not lie in

a proper linear subspace of RL.

The conditional mean in Assumption 4 takes expectation across all products j for a

fixed market t. Assumption 4 first assumes all Xjt are exogenous characteristics. Prices

are taken to be exogenous throughout the context of the plain logit model for expositional

purposes. We will relax this assumption in the next section. Assumption 4 also imposes no

multicollinearity requirements on Xjt.

Theorem 5. Let Assumption 4 hold. Let β0 be the coefficient on the constant. Normalize

β0 = 0. Then (κ1, · · · , κT , β) are identified.

The proofs are in the appendix. Theorem 5 indicates that all parameters are identified

except for the constant. This result has straightforward and important implications for how

one can deal with the unobserved market size. In particular, when we observe data from a

single market (T = 1), estimating κt resembles estimating the constant term. The desirable

thing is that it would only bias the estimate of the constant in the consumer’s indirect utility

function and does not affect estimates of elasticities. For T ≥ 2, when there are repeated

measures of the same market/region over multiple time periods, or when we have cross-

sectional data from more than one market/region, including market or time dummies in the

model ensures consistent estimation of all parameters but the constant.

However, this method comes with some costs. First, it incurs efficiency loss because the

data variation across markets is not exploited. In addition, the choice probabilities will not be

identified because the true market size is not identified, which puts limitations on the study

of, for example, diversions, mergers, and product entry or exit as these questions depend

heavily on choice probabilities. Moreover, coefficients of market-level regressors will not be

identified, so we cannot estimate marginal effects of any market characteristics. The biggest

limitation is that this method relies on the functional form of the model specification. It

works only in the plain logit model as a special case and cannot be generalized to the random

coefficients demand model (see section 3.5).

E Identification of Market Size in Nested Logit Model

Following the nested logit framework in McFadden (1977) and Cardell (1997), we assume

the utility of consumer i for product j belonging to group g is

Uijt = δjt + ζigt + (1− ρ)εijt,
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where δjt = X ′jtβ+ξjt and εijt is independently and identically distributed with extreme value

type I distribution as before. The unobserved group specific taste ζigt follows a distribution

such that ζigt + (1 − ρ)εijt is also distributed extreme value. ρ measures the correlation

of unobserved utility among products in group g. A larger value of ρ indicates greater

correlation within nest. When ρ = 0, the within group correlation of unobserved utility is

zero, and the nested logit model degenerates to the plain multinomial logit model.

Berry (1994) shows that demand parameters β and ρ can be consistently estimated from

a linear regression similar to the logit equation (1), with an additional regressor ln(πj|gt),

ln(πjt/π0t) = X ′jtβ + ρ ln(πj|gt) + ξjt, (20)

where πj|gt is the conditional choice probability of product j given that a product in group

g is chosen.

Consider the case where all goods are divided up into two nests, with the outside good

as the only choice in group g = 0 and all inside goods belonging to group g = 1. In this

case, πj|gt = r∗jt for j 6= 0, where r∗jt is defined in section 2.2. Then we can rewrite (20) as

ln
(
r∗jt
)

=
1

1− ρ
ln

(
π0t

1− π0t

)
+X ′jt

β

1− ρ
+

ξjt
1− ρ

.

Following the same exposition of the market size model as in section 2.2, we assume equation

(4) hold. Combining above equations and assumptions we get the estimating equation for

the nested logit model

ln (rjt) =
1

1− ρ
ln (γWt − 1) +X ′jt

β

1− ρ
+

ξjt
1− ρ

. (21)

Theorem 6. Given Assumption 1 and equation (21), let Γ be the set of all possible values

of γ, if

1. all relevant first and second order derivatives exist,

2. ∂f(c, q, x)/∂c > 0 or < 0 for all c ∈ Γ, where

f(c, q, x) =
∂h(c, q, x)

∂q

1

h(c, q, x)
− ∂g(q, x)

∂q

1

g(q, x)
,

g(q, x) =
∂E (ln (rjt) | Qt = q,Xjt = x)

∂q
,

h(c, q, x) =
∂E (ln (cWt − 1) | Qt = q,Xjt = x)

∂q
,
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3. and h(c, q, x) 6= 0 for all c ∈ Γ.

Then γ, β and ρ are identified.

The proof of theorem 6 works by showing that there exists q and x such that f(c, q, x) = 0

has a unique solution of c. In practice, if Qt is a scalar random variable, we can use Qt and

any nonlinear function of Qt as instruments to estimate γ and ρ. Nonlinear functions of Qt

(e.g.
√
Qt or Q2

t ) will have additional explanatory power to separately identify γ and ρ.

We exploit the variation in Wt and Qt, and the nonlinearity of the estimating equation

to identify the model. Though theoretically we can distinguish γ and ρ, it can be seen

from equation (21) that separately identifying the two parameters is hard without strong

instruments. If γWt − 1 were close to zero or if the logarithm were not in the equation, ρ

tends to be not identified. We can also see this from a first order Taylor expansion around

Wt = W (White 1980), where W is the mean of Wt. The coefficient of the Taylor series

depends on both γ and ρ. This result partly confirms the commonly held intuition that a nest

structure can mitigate biases caused by unknown market size. A Monte Carlo simulation for

the nested logit model is available upon request.

One might be concerned that the identification result of theorem 6 relies on the functional

form assumption we made in equation (4). There might exist some different functional form

assumption of market size which would make γ and ρ unidentified. For example, the model

would be unidentified by letting the true market size be (exp(γW̃t) + 1)N total
t , for some

variable W̃t. In this case, equation (21) reduces to ln (rjt) = 1/(1− ρ)γW̃t +X ′jtβ/(1− ρ) +

ξjt. However, a market size model of this form is odd and lack of economic meaning.

F RCL with Bernoulli Distribution

Suppose J = 1. Consumers choose either purchasing or not purchasing (i.e., the outside

good). Consumer i’s purchasing decision is given by

Yit = 1[β0i +Xtβ1i + ξt + εit ≥ 0],

where Xt is a scalar random variable, εit is standard logistically distributed, ξt are unobserved

random errors, and (β0i, β1i) are two random coefficients with β0i = β0 + σ0νi and β1i =

β1 + σ1νi.

To get an analytic formula for the predicted market share, we assume that νi follows a

Bernoulli distribution

νi =

0, with probability 1
2

1, with probability 1
2
.

13



Let δt = β0 +Xtβ1 + ξt. The overall true market share in market t is

πt(δt;σ) = E

[
exp(β0i +Xtβ1i + ξt)

1 + exp(β0i +Xtβ1i + ξt)
| Xt, ξt

]
=

1

2
· exp(δt)

1 + exp(δt)
+

1

2
· exp(δt + σ0 +Xtσ1)

1 + exp(δt + σ0 +Xtσ1)
,

Now suppose that the true market size is γMt, and the observed market share is st =

N total
t /Mt. Then the observed and true market share would be linked by st = γπt. Following

BLP, we can implicitly solve for δt by equating st
γ

= πt(δt;σ).

Identification would be based on a set of conditional moment restrictions E(ξt | Zt) = 0,

where Zt is a vector of instruments.

To simplify things and focus only on the constant term, suppose there were no X’s, so

πt(δt;σ0) =
1

2
· exp(δt)

1 + exp(δt)
+

1

2
· exp(δt + σ0)

1 + exp(δt + σ0)
,

and δt = β0 + ξt. Assume that we have two instruments Z1t and Z2t satisfying

E

 ξt

ξtZ1t

ξtZ2t

 = 0.

Since ξt = δt − β0, we can rewrite the above moment conditions as

E

 δt − β0

(δt − β0)Z1t

(δt − β0)Z2t

 = 0. (22)

Note that δt is solved from the demand system, so it is a function of (σ0, γ). For the unknown

parameters (β0, σ0, γ) to be (locally) point identified, we would need there to be a unique

solution to the moment conditions (22). A sufficient condition is that the Jacobian matrix

with respect to (β0, σ0, γ) is non-singular.

Let π0
t ≡ exp(δt)/(1 + exp(δt)) and π1

t ≡ exp(δt + σ0)/(1 + exp(δt + σ0)). Let

g(β0, σ0, γ) =

 δt − β0

(δt − β0)Z1t

(δt − β0)Z2t


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denote the 3× 1 function. The Jacobian matrix would be

E



−π1
t (1− π1

t )

π0
t (1− π0

t ) + π1
t (1− π1

t )

1

γ

−(π0
t + π1

t )

π0
t (1− π0

t ) + π1
t (1− π1

t )
−1

−π1
t (1− π1

t )

π0
t (1− π0

t ) + π1
t (1− π1

t )
Z1t

1

γ

−(π0
t + π1

t )

π0
t (1− π0

t ) + π1
t (1− π1

t )
Z1t −Z1t

−π1
t (1− π1

t )

π0
t (1− π0

t ) + π1
t (1− π1

t )
Z2t

1

γ

−(π0
t + π1

t )

π0
t (1− π0

t ) + π1
t (1− π1

t )
Z2t −Z2t


,

where the first column is the derivative of E[g(β0, σ0, γ)] with respect to σ0, the second

column is the derivative with respect to γ and the third column is the derivative with

respect to β0. For the above Jacobian matrix to be non-singular, we would require some

relevance assumptions:

Cov

(
−π1

t (1− π1
t )

π0
t (1− π0

t ) + π1
t (1− π1

t )
, Zt

)
6= 0, Cov

(
−(π0

t + π1
t )

π0
t (1− π0

t ) + π1
t (1− π1

t )
, Zt

)
6= 0.

When the relevance assumptions are satisfied, the Jacobian matrix is non-singular and there-

fore the moment conditions (22) have a unique solution. In practice, we need enough instru-

ments that satisfy the mean independence assumption and also correlate with the market

shares. When there are X’s in the model and when there are more than one product, poten-

tial extra instruments can be exogenous X’s of competing products in the same market or

the competitiveness of the market. This is because exogenous characteristics of competing

products k 6= j enter the market share function of product j so would in general satisfy the

relevance assumption.

G RCL with Market Fixed Effects

By Assumption 3, we have E
[(
δjt(Njt,Mt, X

(2)
t ; γ0, σ0)−X ′jtβ0

)
φj(Zt)

]
= 0. We can

rewrite the moment condition as

E
[(
δjt

(
Njt,Mt, X

(2)
t ; γ̃, σ0

)
−X ′jtβ0 + δjt

(
Njt,Mt, X

(2)
t ; γ0, σ0

)
−δjt

(
Njt,Mt, X

(2)
t ; γ̃, σ0

))
φj(Zt)

]
= 0, (23)

where γ̃ ∈ Γ can be any value in the parameter space of γ. Suppose one assumes the

market size coefficient is γ̃ and implements the estimation following the standard BLP pro-

cedure, then the probability limit of the empirical moment used in estimation would be

E
[(
δjt(Njt,Mt, X

(2)
t ; γ̃, σ0)−X ′jtβ0

)
φj(Zt)

]
. Now we explore the possibility of consistently
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estimating the parameters β and σ by adding market-level fixed effects like what we did in the

plain logit case. The question then arises as to whether the term showing up in equation (23),

δjt(Njt,Mt, X
(2)
t ; γ0, σ0)−δjt(Njt,Mt, X

(2)
t ; γ̃, σ0), is invariant across products in a given mar-

ket. If yes, then this gap can be captured by a product-invariant parameter κt, and the true

moment condition (23) would be E
[(
δjt

(
Njt,Mt, X

(2)
t ; γ̃, σ0

)
−X ′jtβ0 − κt

)
φj(Zt)

]
= 0,

from which we can consistently estimate σ and β by including market-level dummies, and

the choice of γ̃ would be a free normalization.

We verify this by looking at the changes in δjt resulting from changes in γ. First consider

the plain logit model, where δjt has an analytic form. For a scalar γ, the derivative with

respect to γ is

∂δjt

(
Njt,Mt, X

(2)
t ; γ

)
∂γ

= −1

γ
−

∑
k(Nkt/Mt)

γ2 − γ
∑

k(Nkt/Mt)
,

which depends only on t, implying that the variation in δjt as γ changes is not product

specific and thus δjt(Njt,Mt, X
(2)
t ; γ0) − δjt(Njt,Mt, X

(2)
t ; γ̃) can be captured by κt. This is

the reason why we can use market fixed effects to capture the unobserved outside option in

the logit model.

Now consider random coefficients logit. Suppose J = 2, we have

∂δ1t

(
Njt,Mt, X

(2)
t ; γ, σ

)
∂γ

=

∣∣∣∣∣∣∣
∂π1t

∂δ1t

∂π1t

∂δ2t
∂π2t

∂δ1t

∂π2t

∂δ2t

∣∣∣∣∣∣∣
−1 ∣∣∣∣∣∣∣

π1t

γ

∂π1t

∂δ2t
π2t

γ

∂π2t

∂δ2t

∣∣∣∣∣∣∣ ,

and
∂δ2t

(
Njt,Mt, X

(2)
t ; γ, σ

)
∂γ

=

∣∣∣∣∣∣∣
∂π1t

∂δ1t

∂π1t

∂δ2t
∂π2t

∂δ1t

∂π2t

∂δ2t

∣∣∣∣∣∣∣
−1 ∣∣∣∣∣∣∣

∂π1t

∂δ1t

π1t

γ
∂π2t

∂δ1t

π2t

γ

∣∣∣∣∣∣∣ ,
respectively. The denominators are identical for j = 1, 2. When j = 1, the determinant in the

numerator is 1
γ

(∫
π1tifν(ν)dν

) (∫
π2ti(1− π2ti)fν(ν)dν

)
+ 1
γ

(∫
π2tifν(ν)dν

) (∫
π1tiπ2tifν(ν)dν

)
.

Similarly, when j = 2, the determinant in the numerator is 1
γ

(∫
π2tifν(ν)dν

) (∫
π1ti(1− π1ti)fν(ν)dν

)
+

1
γ

(∫
π1tifν(ν)dν

) (∫
π1tiπ2tifν(ν)dν

)
. The two are equivalent only when ν is not random and

the individual choice probabilities are identical. We can see that it is the individual hetero-

geneity which enters through the random coefficients that makes ∂δjt(Njt,Mt, X
(2)
t ; γ, σ)/∂γ

depend on j. Overall, δjt(Njt,Mt, X
(2)
t ; γ0, σ0)− δjt(Njt,Mt, X

(2)
t ; γ̃, σ0) would have a j sub-

script and cannot be captured market fixed effects.
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H Monte Carlo Simulations

The data generating process for the simulation datasets follows closely that in Armstrong

(2016), but we only consider small J environments to avoid the weak instruments problem

Armstrong raised. Prices are endogenously generated from a demand and supply model,

where firms compete a la Bertrand in the market. In the baseline design of the Monte Carlo

study, the number of products varies across markets. 2/3 of markets have 20 products per

market, and the remaining 1/3 of markets have 60 products in the market. Each firm has 2

products. Other choices of number of products per firm do not significantly alter the results.

We consider a relatively small sample size of T = 100. We use R = 1000 replications of each

design.

Consumer utility is given by the random coefficients model described in Section 3

Uijt = β0 + (βp + σνi)Pjt + β1X1,jt + ξjt + εijt, (24)

where νi is generated from a standard normal distribution. Firm marginal cost is MCjt =

α0 + α1X1,jt + α2XS,jt + ηjt. ξjt and ηjt are generated from a mean-zero bivariate normal

distribution with standard deviations σξ = ση = 0.8 and covariance σξη = 0.2. X1,jt and the

excluded cost shifter XS,jt are drawn from a uniform (0, 1) distribution and independent of

each other. All random variables are independent across products j and markets t.

The true values of cost parameters are (α0, α1, α2) = (2, 1, 1). Demand coefficients and

the random coefficient take different values depending on designs.

We compute the true choice probabilities πjt in accordance with equation (7). By equa-

tions (4), we can compute Njt/Mt = γπjt, where the true value is γ = 1 throughout the

Monte Carlo exercise. In the estimation, one assumes a possibly wrong γ̃ and uses the

mismeasured sjt ≡ Njt/γ̃Mt as the observed market shares.

The instruments we use in the GMM estimation in all experiments are

Zjt = (1, X1,jt,
Jt∑
k=1

X1,kt,
∑
k∈Jf

X1,kt, XS,jt, X
2
S,jt),

where product j is produced by firm f and Jf is the set of all products produced by firm f .

We include BLP-type instruments or Gandhi and Houde differentiation instruments as well

as functions of excluded cost instruments. The optimization algorithm we use for the GMM

estimation is the gradient-based quasi-Newton algorithm (fminunc in MATLAB).
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H.1 Random Coefficients on Constant Term and Price

The first simulation is designed to assess whether and to what extent random coefficients

removes the biases induced from the wrong market size. We generate data from a plain logit

model (σ = 0 in the model of equation (24)). It is widely believed that random coefficients

partly take over the role of γ and can fix issues caused by unobserved market size. To

see if this is true, for each of the 1, 000 simulated datasets, we consider three values of γ̃

(γ̃ = 1, 2, 4) and estimate both the correctly specified plain logit model and the random

coefficients model with a random coefficient on the constant term and price, respectively.

We assume that the true demand coefficients are β = (2,−1, 2).

Tables H.1 to H.3 report results from estimating the plain logit model and the more flex-

ible random coefficients models. Each table shows results for three different assumed market

size γ̃. We report estimates of β, σ, and nonlinear functions of demand parameters, including

the own- and cross-price elasticities, and diversion ratios averaged across products for the

first market. Reported summary statistics of each parameter estimate across simulations are

the mean (MEAN), the standard deviation (SD), and the median (MED).

In Table H.1, comparing to estimates for the specification with correctly measured market

size (γ̃ = 1) in the first three columns, the means of β’s change monotonically as we increase

the assumed market size, and their standard deviations change as well. The implied elastic-

ities and diversion ratios are all sensitive to the assumed market size. When we quadruple

the assumed market size, the mean of the own-price elasticity increases from −5.99 to −4.17,

the cross-price elasticity decreases from 0.077 to 0.028, the individual diversion ratio falls by

half and the diversion to the outside good rises from around 17% to 79%.

Table H.2 shows the results for estimating the random coefficients model with a random

coefficient on the constant term. Although the incorrectly assumed market size results in

biased estimates of β’s, the own-price elasticities and individual diversion ratios of γ̃ = 2, 4

are comparable to the ones of γ̃ = 1. The cross-price elasticities of the model with incorrectly

assumed market size are also closer to those of γ̃ = 1, relative to the plain logit model in Table

H.1 (decreases from 0.078 to 0.069 versus from 0.077 to 0.028). In contrast, the biases in the

outside good elasticity and outside good diversion ratio remain large. When we quadruple

the assumed market size, the mean of outside good diversion ratio rises from roughly 17%

to 27% and the outside-good price elasticity decreases from 0.077 to 0.007.

In Table H.3, we estimate the model with a random coefficient on price. Including the

random coefficient improves especially the estimates of own- and cross-price elasticities as

well as individual diversion ratios, similar to those in Table H.2.

Although not shown in the table, we also experimented with different numbers of products

per market. The design where the number of products varies across markets generally yields

18



larger biases than the design where the number of products is fixed.

Finally, in Table H.4, we report the estimates from our proposed method of equation (5).

Results are based on the IV-GMM estimation that uses cost shifters and sum of character-

istics as instruments for both price and the observed market to sales variable Wt defined in

Section 2. Estimates of β and γ are very close to the true values, with small standard de-

viations. The implied elasticities and diversion ratios are quite comparable to the estimates

of the logit model with correctly assumed market size shown in the first three columns of

Table H.1.

To summarize, we find that including a random coefficient on either term accounts for

the incorrectly assumed γ̃, so that the biases in certain calculations are relatively small. This

finding is consistent with the intuition that σ partly corrects for the mismeasured market size.

However, biases in other substitution patterns such as cross-price elasticities, outside-good

elasticities and diversion ratios are not fully removed.

Table H.1: Monte Carlo Results: Plain Logit, True γ = 1

γ̃ = 1 γ̃ = 2 γ̃ = 4

TRUE MEAN SD MED MEAN SD MED MEAN SD MED

β0 2 1.99 0.318 2.006 -1.205 0.534 -1.192 -2.401 0.594 -2.379
βp -1 -0.998 0.056 -1.002 -0.731 0.094 -0.732 -0.688 0.105 -0.691
β1 2 1.998 0.076 2 1.725 0.105 1.724 1.681 0.114 1.681
Own-Elasticity -5.994 0.354 -6.006 -4.415 0.584 -4.418 -4.17 0.649 -4.181
Cross-Elasticity 0.077 0.005 0.077 0.028 0.004 0.028 0.013 0.002 0.013
Outside-Good Elasticity 0.077 0.005 0.077 0.028 0.004 0.028 0.013 0.002 0.013
Diversion Ratio 0.014 0 0.014 0.007 0 0.007 0.003 0 0.003
Outside-Good Diversion 0.167 0.027 0.166 0.587 0.013 0.586 0.794 0.007 0.794

Notes: The table reports the empirical mean (MEAN), the standard deviation (SD), and the median (MED)
of the demand parameters, the implied price elasticities and diversion ratios for the first market. The GMM
estimates are based on 1, 000 generated data sets of sample size T = 100 and varied J . The true model is a plain
logit model, with γ = 1. Parameters are estimated from the plain logit model assuming γ̃ = 1, 2, 4.
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Table H.2: Monte Carlo Results: Random Coefficient on Constant Term, True γ = 1

γ̃ = 1 γ̃ = 2 γ̃ = 4

TRUE MEAN SD MED MEAN SD MED MEAN SD MED

σ 0 0.037 0.273 0 3.998 0.168 3.992 5.116 0.172 5.11
β0 2 2.039 0.343 2.05 0.86 0.333 0.862 -1.806 0.321 -1.79
βp -1 -1.003 0.057 -1.005 -1.001 0.058 -1.003 -1.001 0.058 -1.003
β1 2 2.003 0.076 2.005 2.004 0.078 2.005 2.004 0.078 2.005
Own-Elasticity -6.022 0.357 -6.031 -6.018 0.364 -6.029 -6.02 0.365 -6.03
Cross-Elasticity 0.078 0.005 0.078 0.069 0.005 0.069 0.068 0.005 0.068
Outside-Good Elasticity 0.077 0.005 0.077 0.017 0.001 0.017 0.007 0 0.007
Diversion Ratio 0.014 0 0.014 0.013 0 0.013 0.012 0 0.012
Outside-Good Diversion 0.166 0.027 0.165 0.255 0.01 0.255 0.271 0.009 0.271

Notes: The table reports the empirical mean (MEAN), the standard deviation (SD), and the median (MED)
of the demand parameters, the implied price elasticities and diversion ratios for the first market. The GMM
estimates are based on 1, 000 generated data sets of sample size T = 100 and varied J . The true model is a plain
logit model, with γ = 1. Parameters are estimated from a random coefficients model with the random coefficient
on the constant term, assuming γ̃ = 1, 2, 4.

Table H.3: Monte Carlo Results: Random Coefficient on Price, True γ = 1

γ̃ = 1 γ̃ = 2 γ̃ = 4

TRUE MEAN SD MED MEAN SD MED MEAN SD MED

σ 0 0.013 0.064 0 0.712 0.057 0.712 0.92 0.044 0.919
β0 2 2.063 0.534 2.057 2.946 0.417 2.951 2.879 0.408 2.88
βp -1 -1.005 0.074 -1.006 -1.39 0.071 -1.389 -1.86 0.084 -1.858
β1 2 2.006 0.09 2.006 2.013 0.08 2.013 2.013 0.08 2.014
Own-Elasticity -6.034 0.434 -6.031 -6.005 0.402 -6.013 -6.026 0.403 -6.032
Cross-Elasticity 0.078 0.007 0.078 0.065 0.006 0.065 0.063 0.005 0.063
Outside-Good Elasticity 0.078 0.005 0.078 0.025 0.002 0.025 0.01 0.001 0.01
Diversion Ratio 0.014 0 0.014 0.012 0 0.012 0.011 0 0.011
Outside-Good Diversion 0.167 0.027 0.165 0.308 0.019 0.308 0.329 0.02 0.329

Notes: The table reports the empirical mean (MEAN), the standard deviation (SD), and the median (MED)
of the demand parameters, the implied price elasticities and diversion ratios for the first market. The GMM
estimates are based on 1, 000 generated data sets of sample size T = 100 and varied J . The true model is a plain
logit model, with γ = 1. Parameters are estimated from a random coefficients model with the random coefficient
on price, assuming γ̃ = 1, 2, 4.
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Table H.4: Monte Carlo Results: Estimating γ in the Plain Logit Model

TRUE MEAN SD MED

γ 1 1.001 0.011 1.001
β0 2 1.99 0.341 1.993
βp -1 -0.999 0.058 -1
β1 2 1.999 0.077 2
Own-Elasticity -5.996 0.362 -6.004
Cross-Elasticity 0.077 0.005 0.077
Outside-Good Elasticity 0.077 0.005 0.077
Diversion Ratio 0.014 0 0.014
Outside-Good Diversion 0.168 0.028 0.167

Notes: The table reports the empirical mean (MEAN), the
standard deviation (SD), and the median (MED) of the de-
mand parameters, the implied price elasticities and diversion
ratios for the first market. The GMM estimates are based
on 1, 000 generated data sets of sample size T = 100 and
varied J . The true model is a plain logit model. Parame-
ters β and γ are estimated from IV-GMM estimations using
excluded cost shifters and BLP instruments.

H.2 Sensitivity to Market Size Assumption

The second experiment complements the first experiment. We now generate data from

a random coefficients model, with a random coefficient for the price. More specifically, we

assume that β = (2,−2, 2), and σ = 1. For each of the 1, 000 simulated datasets, we estimate

the random coefficients model and consider four values of γ̃ (γ̃ = 1, 2, 4, 8). This experiment

is designed to assess how parameter estimates and the implied substitution patterns vary

with market size assumptions in a random coefficients logit model.

Table H.5 shows results of demand estimates and the implied statistics. Some general

tendencies stand out. First, consumer heterogeneity (σ) and disutility for price (βp) tend

to be overestimated as γ̃ increases. The direction of biases in β0 is ambiguous. Second,

the implied elasticities and diversion ratios give similar results as those in Table H.3. The

outside-good elasticities and the outside-good diversion ratios are most sensitive to the choice

of γ̃. The cross-price elasticities are also affected, but not as sensitive as the former two

calculations. However, biases in elasticities and diversion ratios tend not to be monotonic

in γ̃. For instance, γ̃ = 2 leads to an upward bias of the diversion to outside good (from

around 17% to 20%), but γ̃ = 4 gives a modest downward bias of the outside-good diversion

(from 17% to 16%). The extreme case, which imposes γ̃ = 8, results in a much larger bias

(from 17% to 25%). Hence, imposing different assumptions of the market size is not a simple

rescaling of the calculations. This again confirms that random coefficients logit models do

not correct for all biases induced by wrong market size assumptions.
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Table H.5: Sensitivity to Market Size Assumptions in Random Coefficients Logit, True γ = 1

γ̃ = 1 γ̃ = 2 γ̃ = 4

TRUE MEAN SD MED MEAN SD MED MEAN SD MED

σ 1 1 0.034 0.999 1.413 0.036 1.413 2.646 0.173 2.629
β0 2 2.012 0.447 1.999 1.431 0.396 1.418 2.164 0.604 2.143
βp -2 -2.001 0.068 -2 -2.68 0.069 -2.681 -4.604 0.273 -4.577
β1 2 1.998 0.054 2.001 1.984 0.055 1.987 2 0.055 2.001
Own-Elasticity -7.095 0.328 -7.079 -6.922 0.334 -6.913 -7.025 0.392 -6.986
Cross-Elasticity 0.077 0.005 0.076 0.071 0.004 0.071 0.075 0.005 0.074
Outside-Good Elasticity 0.029 0.003 0.029 0.011 0.001 0.011 0.004 0 0.004
Diversion Ratio 0.014 0 0.014 0.014 0 0.014 0.014 0.001 0.014
Outside-Good Diversion 0.175 0.025 0.176 0.201 0.022 0.201 0.167 0.033 0.168

γ̃ = 8

σ 1 2.427 0.048 2.426
β0 2 -1.252 0.416 -1.247
βp -2 -4.307 0.091 -4.306
β1 2 1.91 0.066 1.909
Own-Elasticity -5.84 0.445 -5.826
Cross-Elasticity 0.052 0.004 0.052
Outside-Good Elasticity 0.002 0 0.002
Diversion Ratio 0.013 0 0.013
Outside-Good Diversion 0.247 0.023 0.246

Notes: The table reports the empirical mean (MEAN), the standard deviation (SD), and the median (MED)
of the demand parameters, the implied price elasticities and diversion ratios for the first market. The GMM
estimates are based on 1, 000 generated data sets of sample size T = 100 and varied J . The true model is a
random coefficients logit model with a random coefficient for price, with γ = 1. Parameters are estimated from
the random coefficients model, assuming γ̃ = 1, 2, 4, 8.

H.3 Market Size Estimation in Random Coefficients Logit

The third experiment enables us to assess the performance of our proposed method. As we

discussed in Section 3, it suffices to use the same set of BLP-type instruments to estimate

the market size parameter γ in addition to the random coefficient parameter σ.

The baseline design (design 1) is the same as before: 2/3 of markets have 20 products

per market and the rest of markets have 60 products in the market. The true values of

demand parameters are β = (2,−2, 2). We consider two alternative designs, changing either

the market structure or demand parameters. In design 2, we use the same set of parameters

β = (2,−2, 2) as design 1, but assume all markets have 20 products. This leads to less

variation in the true outside share π0t across markets. In design 3, we use the same market

structure as design 1, but assume β = (2,−3, 2). This particular choice of parameters leads

to larger true outside share π0t, and less variation of π0t in design 3 than in design 1. The

average π0t across 1, 000 simulated samples is 0.55 for design 1, while 0.9 for design 3.

Tables H.6 and H.7 report results from each design. In addition to the mean, the standard

deviation, and the median, we also report the 25% quantile (LQ), the 75% quantile (UQ), the
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root mean squared error (RMSE), the mean absolute error (MAE), and the median absolute

error (MDAE).

Table H.6 shows results for the baseline design. The primary parameter of interest, γ,

tends to be estimated precisely, with the RMSE being 0.2. Estimates of β and σ are mostly

close to the true parameter values, and the RMSEs are small. Only the estimate of the

constant term coefficient β0 is somewhat variable, having a larger RMSE of 0.9. Although

not reported in the main tables, we have estimated the same specification replacing BLP-type

instruments with Gandhi and Houde differentiation instruments. The resulting estimates are

qualitatively similar overall but somewhat more precise with smaller RMSEs.

In Panel A of Table H.7, estimates from design 2 are generally noisier than those in

design 1, with most RMSEs in the range of 0.7 to 1.3. The median of estimates remains

close to the true values. Although γ and demand parameters are less precisely estimated in

design 2, our proposed estimation is still more preferable to making wrong assumptions of

the market size. As shown in the table, the mean of γ estimates is 1.447, which is closer to

the true value than any γ̃ > 1.5. Panel B provides results for design 3. γ, σ and βp appear

to be difficult to be precisely estimated, with large standard deviations. Intuitively, when

the shares of the outside option are too large, the variation of market shares of inside goods

is squeezed. The limited variation in data leads to the poor performance of the estimator.

This confirms that our proposed estimator works well particularly in cases where the true

outside good share is not too large and has enough variation across markets.

Table H.6: Estimating γ in the Random Coefficients Logit Model, Design 1

TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

γ 1 1.032 0.211 0.861 1.004 1.195 0.213 0.178 0.173
σ 1 0.969 0.226 0.805 1.019 1.16 0.228 0.19 0.169
β0 2 1.655 0.924 1.146 1.842 2.296 0.985 0.704 0.517
βp -2 -1.956 0.358 -2.26 -2.036 -1.686 0.361 0.303 0.273
β2 2 1.989 0.059 1.95 1.994 2.026 0.06 0.047 0.038

Notes: The table report summary statistics of the demand parameters. The GMM
estimates are based on 1, 000 generated data sets of sample size T = 100 and varied
J . The true model is a random coefficients logit model with a random coefficient
for price. Parameters β, σ and γ are estimated from IV-GMM estimations using
excluded cost shifters and BLP instruments. Design 1: β = (2,−2, 2), varied
number of products per market.
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Table H.7: Estimating γ in the Random Coefficients Logit Model, Alternative Designs

TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

Panel A: Design 2
γ 1 1.447 1.188 0.887 1.006 1.711 1.269 0.607 0.222
σ 1 1.169 0.712 0.913 1.034 1.291 0.732 0.312 0.156
β0 2 1.744 0.835 1.285 1.771 2.287 0.873 0.663 0.511
βp -2 -2.273 1.109 -2.483 -2.052 -1.863 1.142 0.502 0.255
β2 2 1.991 0.077 1.936 1.994 2.044 0.078 0.062 0.052

Panel B: Design 3
γ 1 2.234 2.143 0.67 1.011 3.452 2.472 1.574 0.457
σ 1 2.518 5.15 0.795 0.994 2.223 5.367 1.743 0.287
β0 2 1.844 1.511 1.309 1.835 2.305 1.518 0.659 0.511
βp -3 -5.351 7.901 -4.938 -2.988 -2.665 8.24 2.731 0.537
β2 2 1.989 0.119 1.958 1.994 2.028 0.12 0.046 0.034

Notes: The table report summary statistics of the demand parameters. The GMM
estimates are based on 1, 000 generated data sets of sample size T = 100 and varied
J . The true model is a random coefficients logit model with a random coefficient
for price. Parameters β, σ and γ are estimated from IV-GMM estimations using
excluded cost shifters and BLP instruments. Design 2: β = (2,−2, 2), fixed number
of products per market. Design 3: β = (2,−3, 2), varied number of products per
market.

I Pricing Conditions in Merger Analysis

Assume that firms are under a static Nash-Bertrand pricing game. Following the steps and

notation in Weinberg and Hosken (2013), let Jf denote the set of all products produced by

firm f . The first-order condition for product j produced by firm f can be written as

∑
k∈Jf

(
pk −mck

pk

)
ηk,jπk + πj = 0, (25)

where mc is the marginal costs, and ηk,j is the elasticity of product k with respect to the

price of j. This yields a system of J equations in each market. Using observed prices, market

shares, and the price elasticities computed from the estimated demand, one can solve for the

marginal costs.

After a merger, firms’ profit functions change and the equilibrium prices firms optimally

choose would also change. If firm f merged with firm g, holding the characteristics and

marginal costs of all their products constant, the merged firm’s first-order conditions become:

∑
k∈Jf

(
pk −mck

pk

)
ηk,jπk +

∑
h∈Jg

(
ph −mch

ph

)
ηh,jπh + πj = 0,

based off which one can use the recovered marginal costs and estimated demand to solve for
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the post-merger equilibrium prices.

To demonstrate how a wrong market size can undermine the conclusion of a merger

analysis, we substitute the formula of price elasticities into equation (25), giving

−
∑
k∈Jf

(pk −mck)
∫
βpiπjiπkidF (βpi) + πj = 0.

The market size affects three things: the estimated random coefficient on price βpi, the

estimated individual choice probabilities πji and πki, and the share πj itself.

J Additional Results for the CSD Application

J.1 Aggregate Price Elasticity

We provide additional results for the soft drink application. First, we calculate the price

elasticity of aggregate demand, which is the percentage change in total sales for soft drinks

when the prices of all soft drinks increase. Note that we can link aggregate demand directly

to the outside share, by recognizing that without an outside option defined in the model,

the aggregate market demand is perfectly inelastic. More formally, in a simple logit model,

the price elasticity of aggregate demand can be calculated by απ0p̂, where α is the price

coefficient and p̂ the average price.

This aggregate elasticity can be thought of as the market-level response to a proportional

tax imposed on all products. It is economically important, for example, when policymakers

aim to evaluate the effectiveness and targeting of soda taxes.

Figure J.1 illustrates the estimated aggregate elasticities of demand in each market when

γ = 17 and 12, respectively. With a larger market size, the aggregate elasticity falls (in

absolute value). The direction of bias is same as those found in Conlon and Mortimer

(2021). Moreover, it not only changes the mean level but also the overall distribution across

markets. This finding confirms that market size definition is relevant for questions that affect

all products in a market.
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Figure J.1: Distribution of Aggregate Elasticities across Markets
Notes: The figure shows the aggregate elasticities of demand across markets
for γ = 12 and 17.

J.2 Profiled GMM Objective Function

We plot the GMM objective function while keeping γ fixed over a grid of values and re-

optimizing the remaining parameters with the weighting matrix fixed. There are no multiple

minima within the specified interval. However, the function is not steep around the minimum,

which could pose challenges for numerical optimization. Stronger instruments may help

improve parameter identification and numerical optimization.

Figure J.2: Profiled GMM Objective

Notes: The figure shows the profiled GMM objective. γ is fixed while the
remaining parameters are re-optimized.
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K Merger Analysis: Ready-to-Eat Cereal Market

The data in Nevo (2000) is simulated from a model of demand and supply, and consists of

24 brands of the ready-to-eat cereal products for 94 markets. Nevo’s specification contains

a price variable and brand fixed effects. The variables that enter the non-linear part of the

model are the constant, price, sugar content and a mushy dummy. For each market 20 iid

simulation draws are provided for each of the non-linear variables. In addition to the unob-

served tastes, νi, demographics are drawn from the current population survey (CPS) for 20

individuals in each market. It allows for interactions between demographics such as income

and the child dummy with price, sugar content and the mushy dummy, capturing hetero-

geneity on the tastes for product characteristics across demographic groups. To instrument

for the endogenous variables (prices and market shares), Nevo (2000) uses as instruments

the prices of the brand in other cities, variables that serve as proxies for the marginal costs

, distribution costs and so on.

A market is defined as a city-quarter pair and thus the market size is the total potential

number of servings. Nevo assumes the potential consumption is one serving of cereal per

day. Using notations in this paper, the assumed market potential is therefore 1 ·Mt, where

Mt is the population in city t in this case.

The baseline specification replicates that in Nevo (2000). We calculate the estimated

own- and cross-price elasticities and diversion ratios, which are the mean of all entries of the

elasticity/diversion ratio matrix over the 94 markets. The results demonstrate the average

substitution patterns between products. On the basis of the baseline estimation, we consider

a hypothetical merger analysis between two multi-products firms. Post-merger equilibrium

prices are solved from the Bertrand first order condition. Consumer surplus claculations are

provided to show the impacts of the hypothetical merger. Next, we consider an alternative

choice of potential market size. We rescale the market shares for all inside goods by a factor

of 1/2, which is equivalent to taking the potential market size to be double as large as in

the baseline case. We resimulate the merger using the rescaled market shares. Finally, we

assume the true market size is γ servings per person per day, estimate γ and repeat the

merger simulation.

Table K.1 reports the demand coefficients and the implied mean elasticities and diversion

ratios. The baseline estimation replicates the results in Nevo (2000). Interestingly, doubling

the market size has little impact on the estimates of demand coefficients β and σ. The

baseline estimation has a price coefficient of −32 and the rescaled of −28.9. However, trans-

lating it to elasticities and diversion ratios, we see a substantial increment in the diversion

to outside option. In particular, the average outside-good diversion increase from 37.5% to
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60.2%. These estimates imply that, if one assumed a larger market size, more consumers

would switch to outside good rather than alternative substitutes upon an increase in price

of inside goods. The third column presents the estimated γ and the associated demand

estimates. γ̂ = 0.78 means that the true market size is a potential daily consumption of 0.78

servings per person. The implied market size is smaller than the baseline case, leading to a

lower true diversion ratio. Our estimate of γ makes economic sense and has a small standard

error. Given γ estimate being 0.78, we can calculate the outside share is about 40%. It is a

relatively small outside share so the identification is strong in the current context.

In order to quantify the overall effect of uncertainty in market size on merger analysis,

we look at the impact on both the simulated prices and consumer surplus. Figure K.1 plots

the distribution of percentage price changes pre- and post-merger, where the three curves

plot the baseline case, rescaled case and the case for our estimate of γ. Predicted price

increase is the smallest when we assume γ = 2. When the potential market size is two times

the baseline case, prices of the merging brands respond relatively less to the merger, with

a median increase of 5.4%. While in the baseline case, the median price increase is 10.7%

for the merging brands. Under the true estimated market size γ̂ = 0.78, the predicted price

increase is larger than assuming γ = 1. This is consistent with our intuition: when there

are less people substitute to outside good, the merging firms will have a greater increase in

market power.

Next we consider the implications of our estimates for the consumer surplus change after

the merger.20 As expected, we predict a larger decrease in consumer surplus when the price

increase is high. Overall, different market sizes affect how much we predict a merger harms

consumer welfare.

20The consumer surplus is the expected value of the highest utility one can get measured in dollar values.
It is calculated by CS =

∑NS
i=1 witCSit, where the consumer surplus for individual i is

CS = ln

1 +
∑
j∈Jt

expVijt

/(−∂Vi1t
∂p1t

)
, and Vijt ≡ Uijt − εijt.
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Table K.1: Parameter Estimates for the Cereal Demand

Baseline (Mt) Rescaled (2Mt) Estimate γ

βprice -32 -28.9 -35.817
(2.304) (3.294) (7.055)

σcons 0.375 0.245 0.684
(0.120) (0.156) (0.329)

σprice 1.803 3.312 2.134
(0.920) (0.972) (1.737)

σsugar -0.004 0.016 -0.029
(0.012) (0.014) (0.029)

σmushy 0.086 0.025 0.173
(0.193) (0.192) (0.269)

σcons×inc 3.101 3.223 4.119
(1.054) (0.875) (1.799)

σcons×age 1.198 0.7 2.118
(1.048) (0.682) (1.755)

σprice×inc 4.187 -2.936 8.979
(4.638) (5.155) (152.358)

σprice×child 11.75 10.87 14.495
(5.197) (4.747) (7.515)

σsugar×inc -0.19 -0.143 -0.295
(0.035) (0.032) (0.081)

σsugar×age 0.028 0.027 0.024
(0.032) (0.033) (0.038)

σmushy×inc 1.495 1.396 1.526
(0.648) (0.470) (0.898)

σmushy×age -1.539 -1.251 -1.919
(1.107) (0.677) (1.675)

γ 0.779
(0.062)

Mean own-elasticity -3.702 -3.682 -3.804
Mean cross-elasticity 0.095 0.061 0.121
Mean outside-good diversion 0.375 0.602 0.226

Notes: The first column is the baseline estimation where market potential is
1 serving per person per day. The second column is the rescaled estimation
where the market potential is 2 servings per person per day. In the third
column we estimate the market size parameter γ.
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Figure K.1: Equilibrium Price Changes
Notes: The figure shows changes in equilibrium prices after a merger between
firms 1 and 2.

Figure K.2: Consumer Surplus Changes
Notes: The figure shows changes in equilibrium prices after a merger between
firms 1 and 2.

L Additional Derivations

Partial Derivatives of πjt

The partial derivatives of πjt with respect to δjt and δkt are functions of mean utilities and

characteristics of all products:

∂πjt
∂δjt

=

∫
πjti

(
δt, X

(2)
t ;σ

)(
1− πjti

(
δt, X

(2)
t ;σ

))
fν(ν)dν,

∂πjt
∂δkt

= −
∫
πjti

(
δt, X

(2)
t ;σ

)
πkti

(
δt, X

(2)
t ;σ

)
fν(ν)dν,
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where

πjti

(
δt, X

(2)
t ;σ

)
=

exp
(
δjt +

∑
l σlx

(2)
jtl νil

)
1 +

∑Jt
k=1 exp

(
δkt +

∑
l σlx

(2)
ktlνil

) .
The partial derivatives of πjt with respect to σl is

∂πjt

(
δt, X

(2)
t ;σ

)
∂σl

=

∫
πjti

(
δt, X

(2)
t ;σ

)(
x

(2)
jtl −

J∑
k=1

x
(2)
ktlπkti

(
δt, X

(2)
t ;σ

))
νilfν(ν)dν

Relevance of Instruments

The legitimacy of treating λγ and λσ alike in section 3.3 is shown below. We first recognize

that for any given (Nt,Mt, Xt) and model parameters, the residual function in equation (9)

can be rewritten as

ξjt

(
Nt∑

k(λγk1 + 1)M
λγk2
t

, Xt;λσ, β

)
= δjt

(
Nt∑

k(λγk1 + 1)M
λγk2
t

, X
(2)
t ;λσ

)
−X ′jtβ. (26)

When λγ1 = λγ2 = 0, and let st denote the usual observed shares Nt/Mt, the residual function

reduces to

ξjt(st;λσ, β) = δjt(st;λσ)−X ′jtβ,

which is equivalent to equation (4) in Gandhi and Houde (2019). When λγ is different from

zero, the residual function would depend nonlinearly on λγ as well. The residual function is

not linear in λγ because ∂δjt/∂λγ is a function that depends on λγ.

The linear approximation in section 3.3 can also be obtained from linearizing the inverse

demand function around the true λ0

δjt

(
Nt,Mt, X

(2)
t ;λ

)
≈ δjt

(
Nt,Mt, X

(2)
t ;λ0

)
+
∑
l

(λσl − λσl0)fσl,jt +
∑
k

(λγk − λγk0)fγk,jt

= X ′jtβ0 + ξjt +
∑
l

(λσl − λσl0)fσl,jt +
∑
k

(λγk − λγk0)fγk,jt,

with fσl,jt = ∂δjt(Nt,Mt, X
(2)
t ;λ0)/∂σl, f

γ
k,jt = ∂δjt(Nt,Mt, X

(2)
t ;λ0)/∂γk. Note that fσl,jt and

fγk,jt depend on the vector of δt and X
(2)
t .
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