Intro	Benchmark	Setting	Stage 2	Stage 1	Conclusion
000000	0000	000	0000	00000	

Markups, Markdowns, and Bargaining in Vertical Supply Chains

Rémi Avignon*, Claire Chambolle*, Etienne Guigue[†] and Hugo Molina*

*INRAE [†]KU Leuven

EARIE conference - August, 2024

What is the consequence of buyer power on welfare?

Controversial views according to the economic literature:

- countervailing power theory (Galbraith, 1952):
 - *Q* Rebates obtained by downstream firms are transmitted to consumers.
 ⇒ Buyer power toward suppliers is welfare improving.
 - Common feature of the vertical relationship literature.
- monopsony power theory (Robinson, 1933):
 - Q Salaries fixed below the competitive level lead to production reduction. \Rightarrow Firms monopsony power is detrimental to welfare;
 - *I* Long tradition in **labor litterature**.
- \Rightarrow Two different settings that have not been combined.

Research Question

How do bargaining power and market power interact in supply chains?

- what implications for welfare?
- what implications for profit-sharing?

Intro	Benchmark	Setting	Stage 2	Stage 1	Conclusion
00●000	0000	000	0000	00000	
1.1.					

Literature

- I Florishing literature on markups & markdowns:
 - building on the PF approach (De Loecker and Warzynski, 2012),
 - ▶ including Morlacco (2019); Rubens (2023); Avignon and Guigue (2022),
 - not explicitly modeling vertical relations, nor generating counterfactuals.

2 Structural IO literature analyzing profit-sharing & efficiency in value chains:

- building on the demand-conduct approach (Berry et al., 1995) and theoretical vertical relationship literature,
- including Berto Villas-Boas (2007); Crawford and Yurukoglu (2012); Gowrisankaran et al. (2015); Ho and Lee (2017); Dubois and Sæthre (2020); Bonnet et al. (2023).
- explicitly modeling firm conducts, and generating counterfactuals.
- assuming constant marginal cost which rules out monopsony power.
- Solution Nascent literature (Alviarez et al., 2023; Hahn, 2023) aiming to bridge both:
 - developing frameworks where bargaining outcomes have no welfare effects.

 \Rightarrow Need for a bargaining theory with welfare effects allowing for mark-ups/downs.

<mark>Intro</mark>	Benchmark	Setting	Stage 2	Stage 1	Conclusion
000●00	0000	000	0000	00000	

What we Do

- Considering a simple vertical supply chain.
- Extending the canonical model of vertical relationships to allow for monopsony power.
- Relaxing two standard assumptions to do so:
 - constant marginal cost of U,
 - the exchanged quantity is always set by D.
- Exploring welfare and profit-sharing implications within this framework.
- Clarifying the nature of market power (markups or markdowns) at each stage of the vertical chain.

Intro	Benchmark	Setting	Stage 2	Stage 1	Conclusion
0000●0	0000	000	0000	00000	

Definitions

The **markup** of firm *i*, denoted μ_i is the wedge (ratio) between its output price and the minimal remuneration required for its marginal output to be supplied.

The usual expression for markup is:

$$\mu_i \equiv \frac{\text{output price } i}{\text{marginal cost } i} = \frac{\text{output price } i}{\text{marginal revenue } i}$$

The **markdown** of firm *i*, denoted ν_i is the wedge between its input price and the maximal input cost at which the marginal unit would be purchased.

The usual expression for markdown is:

$$u_i \equiv \frac{\text{marginal revenue } i}{\text{input price } i} = \frac{\text{marginal cost } i}{\text{input price } i}$$

Remark: In Nash-Bargaining transactions, the buyer's marginal cost, and the seller's marginal revenue are not defined. We show that well-defined ratios are the appropriate measures of markups and markdowns.

The **margin** of firm *i* m_i is the wedge (ratio) between the output price and the input price. $m_i = \mu_i \nu_i = \frac{output \ price}{input \ price}$

Preview of Results

Benchmark

A vertically integrated firm exerting monopsony and monopoly power generates an inefficiency by imposing a markdown and a markup.

Vertical relationships

Under linear pricing, a vertical chain:

- creates, in general, an additional inefficiency varying with U's bargaining weight α :
 - double markup-isation à la Cournot (1838)-Spengler (1950) if $\alpha > \alpha_I$,
 - \star in that case, total welfare is decreasing in α ,
 - double markdown-isation if $\alpha < \alpha_I$,
 - $\star\,$ in that case, total welfare is increasing in $\alpha,$
 - $\Rightarrow U$ and D cannot simultaneously make a markup and a markdown in a bilateral transaction.
- reaches the vertically integrated firm outcome if $\alpha = \alpha_I$, with:
 - $0 < \alpha_I < 1$ for any increasing MC_U and decreasing MR_D ,
 - $\alpha_I = 0$ if MC_U is constant (pure countervailing power case),
 - $\alpha_I = 1$ if MR_D is constant (pure monopsony power case),

Intro	Benchmark	Setting	Stage 2	Stage 1	Conclusion
000000	●000	000	0000	00000	

1 Benchmark

2 Setting

3 Stage 2

where for any function f appearing here and throughout the presentation, • $\epsilon_f(q) \equiv \frac{f(q)}{q|f'(q)|}$ is the elasticity of f(.), • $\sigma_f(q) \equiv \frac{qf''(q)}{|f'(q)|}$ is a measure of convexity of f(.).

Intro	Benchmark	Setting	Stage 2	Stage 1	Conclusion
000000	00●0	000	0000	00000	

Vertically-Integrated Firm: Equilibrium

The maximization program of firm I is given by:

$$\max_{q} \Pi_{I} = (p(q) - r(q))q,$$

yielding the FOC:

$$\underbrace{p(q_l)(1-\varepsilon_p^{-1}(q_l))}_{MR_l(q_l)}=\underbrace{r(q_l)(1+\varepsilon_r^{-1}(q_l))}_{MC_l(q_l)}.$$

We can define firm's *I*:

a markup $\mu_I \equiv \frac{p(q_I)}{MC(q_I)} = \frac{1}{1 - \varepsilon_p^{-1}(q_I)}$, **a** markdown $\nu_I \equiv \frac{MR(q_I)}{r(q_I)} = 1 + \varepsilon_r^{-1}(q_I)$, **a** (total) margin $M_I \equiv \frac{p(q_I)}{r(q_I)} = \nu_I \times \mu_I = \frac{1 + \varepsilon_r^{-1}(q_I)}{1 - \varepsilon_p^{-1}(q_I)}$.

Intro	Benchmark	Setting	Stage 2	Stage 1	Conclusion
000000	000●	000	0000	00000	

Vertically-Integrated Firm: Representation

 \implies Both markups and markdowns reduce welfare by reducing quantity. \implies Consumers pay a higher price and input suppliers get a lower price.

Rémi Avignon (INRAE)

Markups, Markdowns, Bargaining

Intro	Benchmark	Setting	Stage 2	Stage 1	Conclusion
000000	0000	●00	0000	00000	

Benchmark

Rémi Avignon (INRAE)

Intro	Benchmark	Setting	Stage 2	Stage 1	Conclusion
000000	0000	○●○	0000	00000	

The Supply Chain

Supply
 inverse supply r(q) r'(q) > 0, σ_r(q) > -2
Input Monopsony power
Firm U
 monopsonist Π_U(q) = (w(q) - r(q))q bargaining weight α
Intermediate product Bargaining on price w
Firm D
• bargaining weight 1- α • $\Pi_D(q) = (p(q) - w(q))q$ • monopolist
Output Monopoly power
Demand
 inverse demand p(q) p'(q) < 0, ε_p(q) ≥ 1, σ_p(q) < 2

Rémi Avignon (INRAE)

Timing Assumption

- Stage 1: firms U and D bargain over a unit (wholesale) price w.
- Stage 2: based on w,
 - U sets its optimal quantity q_U ,
 - D sets its optimal quantity q_D .

The equilibrium quantity is

$$q(w) = \min\{q_U(w), q_D(w)\},\$$

and the equilibrium input and output prices are r(q) and p(q).

Note that:

- increasing MC_U requires to make the equilibrium condition explicit,
- it embeds the literature standard assumption (*i.e* quantity is set by D),
- we restrict attention to linear prices.

Intro	Benchmark	Setting	Stage 2	Stage 1	Conclusion
000000	0000	000	●000	00000	

Benchmark

2 Setting

Rémi Avignon (INRAE)

Quantity choice of D

D knows w, its maximization program is given by:

$$\max_{q_D} \, \Pi_D = (p(q_D) - w) q_D \,\,\,\, ext{subject to} \,\,\,\, q_D \leq q_U(w)$$

The FOC holds for the interior solution $\tilde{q}_D(w)$:

$$\underbrace{p(\tilde{q}_D(w))(1-\varepsilon_p^{-1}(\tilde{q}_D(w)))}_{MR_D(\tilde{q}_D(w))} = w$$

If $\tilde{q}_D(w) > q_U(w)$, $MR_D(q_U(w)) > w$ as MR_D is decreasing. This yields:

$$q_D(w) = egin{cases} ilde q_D(w) & ext{if } ilde q_D(w) \leq q_U(w), \ q_U(w) & ext{otherwise}. \end{cases}$$

Quantity choice of U

U knows w, its maximization program is given by:

$$\max_{q_U} \Pi_U = (w - r(q_U))q_U$$
 subject to $q_U \leq q_D(w)$

The FOC holds for the interior solution $\tilde{q}_D(w)$:

$$w = \underbrace{r(\tilde{q}_U(w))(1 + \varepsilon_r^{-1}(\tilde{q}_U(w)))}_{MC_U(\tilde{q}_U(w))}$$

If $\tilde{q}_U(w) > q_D(w)$, $w > MC_U(q_D(w))$ as MC_U is increasing. This yields:

$$q_U(w) = egin{cases} ilde q_D(w) & ext{if } ilde q_D(w) \leq q_U(w), \ q_U(w) & ext{otherwise}. \end{cases}$$

Quantity Exchanged

The quantity exchanged is the minimum of the two quantities each player is willing to exchange:

$$q(w) = \min\{q_U(w), q_D(w)\},\$$

and we have:

$$q(w) = \min\{\tilde{q}_U(w), \tilde{q}_D(w)\},\$$

implying that:

$$w(q) = egin{cases} MC_U(q) ext{ if } ilde q_u(w) < ilde q_D(w) \ MR_D(q) ext{ if } ilde q_u(w) > ilde q_D(w) \end{cases}$$

 \Rightarrow firms anticipate the price schedule w(q) when negotiating in stage 1.

Intro	Benchmark	Setting	Stage 2	Stage 1	Conclusion
000000	0000	000	0000	●0000	

Benchmark

2 Setting

3 Stage 2

Bargaining

U and D bargain à la Nash with resp. bargaining weights α and $1 - \alpha$. We write and solve the program in q (equivalent to solving in w):

$$\max_{q} \Pi_{U}(q)^{\alpha} \Pi_{D}(q)^{(1-\alpha)} \quad \text{s.t} \quad w(q) = \begin{cases} MC_{U}(q) \text{ if } \tilde{q}_{u}(w) < \tilde{q}_{D}(w) \\ MR_{D}(q) \text{ if } \tilde{q}_{u}(w) > \tilde{q}_{D}(w) \end{cases}$$

where
$$\Pi_U(q) = (w(q) - r(q))q$$
 and $\Pi_D(q) = (p(q) - w(q))q$.
The FOC yields:

$$\alpha \underbrace{\left[\frac{\partial w(q)q}{\partial q} - MC_U(q)\right]}_{\frac{\partial \Pi_U(q)}{\partial q}} \Pi_D(q) + (1-\alpha) \underbrace{\left[\frac{MR_D(q) - \frac{\partial w(q)q}{\partial q}\right]}_{\frac{\partial \Pi_D(q)}{\partial q}} \Pi_U(q) = 0$$

 \Rightarrow depends on firm anticipations of the schedule w(q), and thus on α .

Bargaining with efficient weights $(\alpha = \alpha_I)$

We start with a specific case that proves to be a useful baseline.

 α_I is the threshold value of α such that the Nash-bargaining outcome corresponds to the integrated-firm outcome.

For this α_I , the Nash-program FOC thus has to yield:

 $MR_D(q_{\alpha_I}) = MC_U(q_{\alpha_I}),$

which implies that:

$$\alpha_I \equiv \frac{\Pi^U(q_I)}{\Pi^U(q_I) + \Pi^D(q_I)},$$

with $0 < \alpha_I < 1$. Authorizing constant MC_U or MR_D , we have:

 $\alpha_I = \begin{cases} 0 & \text{if } MC_U(q) \text{ is constant in } q \text{ ("pure countervailing power case")} \\ 1 & \text{if } MR_D(q) \text{ is constant in } q \text{ ("pure monopsony power case")}. \end{cases}$

21/25

Intro	Benchmark	Setting	Stage 2	Stage 1	Conclusion
000000	0000	000	0000	000●0	
Road N	lap				

We now treat the two remaining cases, each divided into two sub-cases:

- D is weak in the bargaining (α_I < α):
 (a) extreme case: α = 1 (TIOLI offer from U), . More
 (b) intermediate case: α_I < α < 1; . More
- U is weak in the bargaining (α < α_I):
 (a) extreme case: (TIOLI offer from D) More,
 (b) intermediate case: 0 < α < α_I; More

The equilibrium $\{q_{\alpha}, r_{\alpha}, w_{\alpha}, p_{\alpha}\}$ is defined in three parts depending on the value of α relatively to a threshold $\alpha_{I} = \frac{\Pi_{U}(q_{I})}{\Pi_{I}(q_{I}) + \Pi_{D}(q_{I})}$.

• Case 1: when
$$0 \le \alpha < \alpha_I$$
,

(i)
$$q_{\alpha} < q_{I}, r_{\alpha} < r_{I}, w_{\alpha} < w_{I}$$
, and $p_{\alpha} > p_{I}$,
(ii) $\nu_{U} > 1, \mu_{U} = 1, \nu_{D} > 1, \mu_{D} > 1$,
(iii) $\frac{\partial q_{\alpha}}{\partial \alpha} > 0, \frac{\partial r_{\alpha}}{\partial \alpha} > 0, \frac{\partial w_{\alpha}}{\partial \alpha} > 0$, and $\frac{\partial p_{\alpha}}{\partial \alpha} < 0$,
(iv) total welfare is increasing in α ;

• Case 2: when
$$\alpha = \alpha_I$$
,

(i)
$$q_{\alpha_I} = q_I$$
, $r_{\alpha_I} = r_I$, $w_{\alpha_I} = w_I$, and $p_{\alpha_I} = p_I$;
(ii) $\nu_U > 1$, $\mu_U = \nu_D = 1$, $\mu_D > 1$,

• Case 3: when
$$\alpha_I < \alpha \leq 1$$
,

(i)
$$q_{\alpha} < q_{I}, r_{\alpha} < r_{I}, w_{\alpha} > w_{I}$$
, and $p_{\alpha} > p_{I}$,
(ii) $\nu_{U} > 1, \mu_{U} > 1, \nu_{D} = 1, \mu_{D} > 1$,
iii) $\frac{\partial q_{\alpha}}{\partial \alpha} < 0, \frac{\partial r_{\alpha}}{\partial \alpha} < 0, \frac{\partial w_{\alpha}}{\partial \alpha} > 0$, and $\frac{\partial p_{\alpha}}{\partial \alpha} > 0$,
iv) total welfare is decreasing in α .

Intro	Benchmark	Setting	Stage 2	Stage 1	Conclusion
000000	0000	000	0000	00000	●○

Conclusion

A vertically integrated firm exerting monopsony and monopoly power generates an inefficiency by imposing a markdown and a markup.

Under linear pricing, a vertical chain:

- can reach the vertically integrated firm outcome if and only if U's bargaining weight α is at its efficient level (α_I) , with:
 - $0 < \alpha_I < 1$ for any increasing MC_U and decreasing MR_D ,
 - $\alpha_I = 0$ if MC_U is constant (pure countervailing power case),
 - $\alpha_I = 1$ if MR_D is constant (pure monopsony power case),
- generates, in general, an additional inefficiency:
 - double markup-isation à la Cournot (1838)-Spengler (1950) if $\alpha > \alpha_I$,
 - $\star\,$ in that case, total welfare is decreasing in $\alpha,$
 - double *markdown-isation* if $\alpha < \alpha_I$,
 - $\star\,$ in that case, total welfare is increasing in α ,
 - \Rightarrow U and D cannot simultaneously make a markup and a markdown in a bilateral transaction.

- pass-through analysis à la Mrázová and Neary (2017),
- more welfare and policy implications,
- maybe another paper: upstream and downstream competition,

Thank you!

Bargaining with efficient weights $(\alpha = \alpha_I)$: Representation

▶ Back

TIOLI offer from $U \ (\alpha = 1)$

U anticipates that its offer w leads to $q(w) = \tilde{q}_D(w) < \tilde{q}_U(w)$, and thus:

$$w(q)=MR_D(q).$$

Its program, here equivalent to the Nash program (as $\alpha = 1$), is thus:

$$\max_{q} \Pi_{U}(q) = w(q)q - r(q)q \quad \text{subject to} \quad w(q) = MR_{D}(q)$$

The FOC yields:

$$\underbrace{w(q_{\alpha_1})\left(1-\varepsilon_{MR_D}^{-1}(q_{\alpha_1})\right)}_{MR_U(q_{\alpha_1};\alpha_1)}=\underbrace{r(q_{\alpha_1})\left(1+\varepsilon_r^{-1}(q_{\alpha_1})\right)}_{MC_U(q_{\alpha_1})}$$

where
$$\varepsilon_{MR_D}^{-1}(q) = \frac{2 - \sigma_p(q)}{\varepsilon_p(q) - 1}$$
 and $MR_U(q, \alpha_1) \equiv \frac{\partial MR_D(q)q}{\partial q}$. From the read maps

TIOLI offer from U ($\alpha = 1$): Representation

Bargaining when D is weak $(\alpha_I < \alpha < 1)$ U and D anticipate $q(w) = \tilde{q}_D(w) < \tilde{q}_U(w)$ and $w(q) = MR_D(q)$, hence:

$$\Pi_U(q) = (MR_D(q) - r(q))q,$$

$$\Pi_D(q) = (p(q) - MR_D(q))q.$$

The (rearranged) Nash-program FOC yields the equilibrium quantity q_{α} :

$$MC_U(q_\alpha) = \underbrace{\beta_D(q_\alpha)MR_D(q_\alpha) + (1 - \beta_D(q_\alpha))MR_U(q_\alpha)}_{\widetilde{MR}_U(q_\alpha)}$$

where $\beta_D(q) \equiv \frac{1-\alpha}{\alpha} \frac{\Pi_U(q)}{\Pi_D(q)}$, and $\beta_D(q_{\alpha_1}) = 0 < \beta_D(q_{\alpha}) < \beta_D(q_{\alpha_l}) = 1$. Rewriting again the Nash-program FOC yields:

$$r(q_{\alpha_1})\underbrace{(1+\varepsilon_r^{-1}(q_{\alpha}))}_{\text{markdown }\nu_U(q_{\alpha})} = \underbrace{\left(1-\varepsilon_{MR_D}^{-1}(q_{\alpha})(1-\beta_D(q_{\alpha}))\right)}_{\text{inv. markup }\mu_U^{-1}(q_{\alpha})}w(q_{\alpha})$$

road map

Bargaining when D is weak $(\alpha_I < \alpha < 1)$: Representation

⇒ double *markup-isation* à la Cournot (1838)-Spengler (1950) ⇒ total welfare decreasing in α

Rémi Avignon (INRAE)

Markups, Markdowns, Bargaining

TIOLI offer from D ($\alpha = 0$)

D anticipates that its offer w leads to $q(w) = \tilde{q}_U(w) < \tilde{q}_D(w)$ and thus:

$$w(q)=MC_U(q).$$

Its program, here equivalent to the Nash program (as $\alpha = 0$), is thus:

$$\max_{q} \Pi_D(q) = p(q)q - w(q)q$$
 subject to $w(q) = MC_U(q)$

The FOC yields:

$$\underbrace{p(q_{\alpha_0})\left(1-\varepsilon_p^{-1}(q_{\alpha_0})\right)}_{MR_D(q_{\alpha_0})} = \underbrace{w(q_{\alpha_0})\left(1+\varepsilon_{MC_U}^{-1}(q_{\alpha_0})\right)}_{MC_D(q_{\alpha_0};\alpha_0)}$$

where $\varepsilon_{MC_U}^{-1}(q) = \frac{2+\sigma_r(q)}{\varepsilon_r(q)+1}$ and $MC_D(q;\alpha_0) \equiv \frac{\partial MC_U(q)q}{\partial q}$. (read map

TIOLI offer from D ($\alpha = 0$): Representation

Bargaining when U is weak $(0 < \alpha < \alpha_I)$ U and D anticipate $q(w) = \tilde{q}_U(w) < \tilde{q}_D(w)$ and $w(q) = MC_U(q)$, hence:

$$\Pi_U(q) = (MC_U(q) - r(q))q,$$

$$\Pi_D(q) = (p(q) - MC_U(q))q.$$

The (rearranged) Nash-program FOC yields the equilibrium quantity q_{α} :

$$MR_D(q_\alpha) = \underbrace{\beta_U(q_\alpha)MC_U(q_\alpha) + (1 - \beta_U(q_\alpha))MC_D(q_\alpha)}_{\equiv \widetilde{MC}_D(q_\alpha)}$$

where $\beta_U(q) \equiv \frac{\alpha}{1-\alpha} \frac{\Pi_D(q)}{\Pi_U(q)}$, and $\beta_U(q_{\alpha_0}) = 0 < \beta_U(q_\alpha) < \beta_U(q_{\alpha_l}) = 1$.

Rewriting again the Nash-program FOC yields:

$$p(q_{\alpha}) \underbrace{\left(1 - \varepsilon_{p}^{-1}(q_{\alpha})\right)}_{\text{inv. markup } \mu_{D}^{-1}(q_{\alpha})} = \underbrace{\left(1 + \varepsilon_{MC_{U}}^{-1}(q_{\alpha})(1 - \beta_{U}(q_{\alpha}))\right)}_{\text{markdown } \nu_{D}(q_{\alpha})} w(q_{\alpha})$$

road map

Bargaining when U is weak $(0 < \alpha < \alpha_I)$: Representation

 \Rightarrow double *markdown-isation* and total welfare increasing in α . **Proof map**

Rémi Avignon (INRAE)

Appendix - Price schedule

Appendix - TIOLI offer from U ($\alpha = \alpha_1 = 1$)

- Quantity and prices: $q_{\alpha_1} \leq q_l$, $p(q_{\alpha_1}) \geq p(q_l)$, $r(q_{\alpha_1}) \leq r(q_l)$.
- Firm *U* margins:
 - markup: $\mu_U(q_{\alpha_1}) = \frac{w(q_{\alpha_1})}{MC_U(q_{\alpha_1})} = \frac{\varepsilon_p(q_{\alpha_1}) 1}{(\varepsilon_p(q_{\alpha_1}) 1) + (\sigma_p(q_{\alpha_1}) 2)} > 1,$
 - markdown: $\nu_U(q_{\alpha_1}) = \frac{MR_U(q_{\alpha_1})}{r(q_{\alpha_1})} = 1 + \varepsilon_r^{-1}(q_{\alpha_1}) > 1$,
 - total margin:

$$M_U(q_{\alpha_1}) = \frac{w(q_{\alpha_1})}{r(q_{\alpha_1})} = \nu_D(q_{\alpha_1}) \times \mu_D(q_{\alpha_1}) = \frac{1 + \varepsilon_r^{-1}(q_{\alpha_1})}{1 - \varepsilon_w^{-1}(q_{\alpha_1})} > 1.$$

- Firm *D* margins:
 - $\blacktriangleright \text{ markup: } \mu_D(q_{\alpha_1}) = \frac{p(q_{\alpha_1})}{MC_D(q_{\alpha_1})} = \frac{1}{1 \varepsilon_p^{-1}(q_{\alpha_1})} > 1,$
 - markdown: $\nu_D(q_{\alpha_1}) = \frac{MR(q_{\alpha_1})}{w(q_{\alpha_1})} = 1$,
 - ► total margin: $M_D(q_{\alpha_1}) = \frac{p(q_{\alpha_1})}{r(q_{\alpha_1})} = \mu_D(q_{\alpha_1}) > 1.$
- \Rightarrow additional inefficiency w.r.t the integrated firm case due to classical double marginalization (Cournot, 1838; Spengler, 1950).

Appendix - Bargaining when D is weak $(lpha_I < lpha < 1)$

- Quantity and prices: $q_{\alpha} \leq q_{I}$, $p(q_{\alpha}) \geq p(q_{I})$, $r(q_{\alpha}) \leq r(q_{I})$.
- Firm *U* margins:
 - markup: $\mu_U(q_\alpha) = \frac{w(q_\alpha)}{MC_U} = f(\alpha, \varepsilon_r(q_\alpha), \varepsilon_p(q_\alpha), \sigma_p(q_\alpha)) > 1$,
 - markdown: $\nu_U(q_\alpha) = \frac{\widetilde{MR}_U(q_\alpha;\alpha)}{r(q_\alpha)} = 1 + \varepsilon_r^{-1}(q_\alpha) > 1,$
 - ► total margin: $M_U(q_\alpha) = \frac{w(q_\alpha)}{r(q_\alpha)} = \nu_D(q_\alpha) \times \mu_D(q_\alpha) > 1.$
- Firm *D* margins:
 - markup: $\mu_D(q_\alpha) = \frac{p(q_\alpha)}{MC_D(q_\alpha)} = \frac{1}{1 \varepsilon_p^{-1}(q_\alpha)} > 1$,
 - markdown: $\nu_D(q_\alpha) = \frac{MR(q_\alpha)}{w(q_\alpha)} = 1$,
 - ► total margin: $M_D(q_\alpha) = \frac{p(q_\alpha)}{r(q_\alpha)} = \mu_D(q_\alpha) > 1.$

Appendix - TIOLI offer from D ($\alpha = \alpha_0 = 0$)

- Quantity and prices: $q_{\alpha_0} \leq q_I$, $p(q_{\alpha_0}) \geq p_I$, $r(q_{\alpha_0}) \leq r_I$.
- Firm *U* margins:
 - Markup: $\mu_U(q_{\alpha_0}) = \frac{w(q_{\alpha_0})}{MC_U(q_{\alpha_0})} = 1,$
 - ► Markdown: $\nu_U(q_{\alpha_0}) = \frac{MR_U(q_{\alpha_0})}{r(q_{\alpha_0})} = 1 + \varepsilon_r^{-1}(q_{\alpha_0}) > 1$,
 - ► Total margin $M_U(q_{\alpha_0}) \equiv \frac{w(q_{\alpha_0})}{r(q_{\alpha_0})} = \nu_U(q_{\alpha_0}) > 1.$
- Firm *D* margins:
 - $\blacktriangleright \text{ Markup: } \mu_D(q_{\alpha_0}) = \frac{p(q_{\alpha_0})}{MC_D(q_{\alpha_0})} = \frac{1}{1 \varepsilon_p^{-1}(q_{\alpha_0})} > 1,$
 - Markdown: $\nu_D(q_{\alpha_0}) = \frac{MR(q_{\alpha_0})}{w(q_{\alpha_0})} = \frac{\sigma_r(q_{\alpha_0}) + \varepsilon_r(q_{\alpha_0}) + 3}{\varepsilon_r(q_{\alpha_0}) + 1} > 1,$
 - Total margin

$$M_D(q_{\alpha_0}) \equiv \frac{p(q_{\alpha_0})}{r(q_{\alpha_0})} = \mu_D(q_{\alpha_0}) \times \nu_D(q_{\alpha_0}) = \frac{1 + \varepsilon_w^{-1}(q_{\alpha_0})}{1 - \varepsilon_p^{-1}(q_{\alpha_0})} > 1.$$

 \Rightarrow additional inefficiency w.r.t the integrated firm case due to double marginalization, hereby coming from monopsony power.

Appendix - Bargaining when U is weak $(lpha_I < lpha < 1)$

- Quantity and prices: $q_{\alpha} \leq q_{I}$, $p(q_{\alpha}) \geq p_{I}$, $r(q_{\alpha}) \leq r_{I}$.
- Firm *U* margins:
 - Markup: $\mu_U(q_\alpha) = \frac{w(q_\alpha)}{MC_U(q_\alpha)} = 1$,
 - Markdown: $\nu_U(q_\alpha) = \frac{MR_U(q_\alpha)}{r(q_\alpha)} = 1 + \varepsilon_r^{-1}(q_\alpha) > 1$,
 - Total margin $M_U(q_\alpha) \equiv \frac{w(q_\alpha)}{r(q_\alpha)} = \nu_U(q_\alpha) > 1.$
- Firm *D* margins:
 - Markup: $\mu_D(q_\alpha) = \frac{p(q_\alpha)}{MC_D(q_\alpha)} = \frac{1}{1 \varepsilon_p^{-1}(q_\alpha)} > 1$,
 - Markdown: $\nu_D(q_\alpha) = \frac{MR(q_\alpha)}{w(q_\alpha)} = g(\alpha, \varepsilon_r(q_\alpha), \varepsilon_p(q_\alpha), \sigma_r(q_\alpha)) > 1$,
 - ► Total margin $M_D(q_\alpha) \equiv \frac{p(q_\alpha)}{r(q_\alpha)} = \mu_D(q_\alpha) \times \nu_D(q_\alpha) = \frac{1 + \varepsilon_w^{-1}(q_\alpha)}{1 \varepsilon_p^{-1}(q_\alpha)} > 1.$

References I

- Alviarez, V. I., M. Fioretti, K. Kikkawa, and M. Morlacco (2023). Two-sided market power in firm-to-firm trade. Technical report, National Bureau of Economic Research.
- Avignon, R. and E. Guigue (2022). Markups and markdowns in the french dairy market. Technical report, Technical report, mimeo.
- Berry, S., J. Levinsohn, and A. Pakes (1995). Automobile prices in market equilibrium. *Econometrica* 63(4), 841–890.
- Berto Villas-Boas, S. (2007). Vertical relationships between manufacturers and retailers: Inference with limited data. *The Review of Economic Studies* 74(2), 625–652.
- Bonnet, C., Z. Bouamra-Mechemache, and H. Molina (2023). The buyer power effect of retail mergers: An empirical model of bargaining with equilibrium of fear. *RAND Journal of Economics*.

References II

- Cournot, A. (1838). Recherches sur les principes mathématiques de la théorie des richesses.
- Crawford, G. S. and A. Yurukoglu (2012). The welfare effects of bundling in multichannel television markets. *American Economic Review 102*(2), 643–685.
- De Loecker, J. and F. Warzynski (2012). Markups and firm-level export status. *American economic review 102*(6), 2437–2471.
- Dubois, P. and M. Sæthre (2020). On the effect of parallel trade on manufacturers' and retailers' profits in the pharmaceutical sector. *Econometrica 88*(6), 2503–2545.
- Galbraith, J. (1952). American capitalism: The concept of countervailing power.

References III

- Gowrisankaran, G., A. Nevo, and R. Town (2015). Mergers when prices are negotiated: Evidence from the hospital industry. *American Economic Review 105*(1), 172–203.
- Hahn, N. (2023). Who is in the driver's seat? markups, markdowns, and profit sharing in the car industry. Technical report, Working Paper.
- Ho, K. and R. S. Lee (2017). Insurer competition in health care markets. *Econometrica 85*(2), 379–417.
- Morlacco, M. (2019). Market power in input markets: Theory and evidence from french manufacturing. *From Micro to Macro: Market Power, Firms' Heterogeneity and Investment, Luxembourg. EIB*.
- Mrázová, M. and J. P. Neary (2017, December). Not so demanding: Demand structure and firm behavior. *American Economic Review 107*(12), 3835–74.

Robinson, J. (1933). The economics of imperfect competition. Springer.

References IV

Rubens, M. (2023). Market structure, oligopsony power, and productivity. *American Economic Review 113*(9), 2382–2410.

Spengler, J. J. (1950). Vertical integration and antitrust policy. *Journal of political economy 58*(4), 347–352.