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Abstract

We present a model of a two-segment tourist destination where there are exter-

nalities of congestion. We show that if the high category segment is su¢ ciently more

pro�table (or more attractive to tourists) than the low category segment then a per-

person tourist tax may increase industry aggregate pro�t. It is optimal to only tax

the low segment and in fact until it creates no externality on the high segment.
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1 Introduction

After the Covid-19 pandemic is mostly over in large parts of the world, overtourism returns

as an important phenomenon for many destinations. In this paper we show that a tourist

tax can (and should) play a signi�cant role as part of the toolbox of the destination man-

agement organizations (DMOs) in their �ght against overtourism; in particular, we show

that a tourist tax may be bene�cial even from the strict point of view of the local providers

�when di¤erentiated across segments.

There is ample evidence that congestion1 caused by overtourism may degrade the tourist

experience at a destination (see below for an extended discussion of the literature). By

modelling the industry as being composed of two vertically di¤erentiated segments, in this

study we also capture the phenomenon that the congestion externality is not homogeneous:

there is a di¤erence between within-segment and cross-segment sensibility to congestion

and, more relevantly, the cross-segment sensibility is not symmetric: the H-segment tourists

(who value and can a¤ord exclusivity) are a¤ected much more by crowds of L-segment

tourists than vice versa. An intervention, like the tax we consider, can have a positive

e¤ect by changing the composition of the destination�s tourist demand, switching demand

from the L segment (with lower willingness to pay - WTP) to the H segment (with higher

WTP for high quality).

While overtourism clearly impacts negatively on the destination�s residents and other

stakeholders as well, we make our point even stronger by arguing the usefulness of a tourist

tax without taking into account the bene�t it could generate outwith the tourism industry.

Thus, our analysis focuses exclusively on the tax�s impact on the (local) industry pro�ts.

Taxes are the typical prescription against congestion externalities. However in our

context taxes would de�nitely hurt the industry pro�ts at a single-segment destination.

What we show is that when the industry is segmented, judiciously chosen taxes can increase

aggregate (across segments) industry pro�t at the destination.

We analyze a continuum of scenarios, depending on the weight given to tax revenues

in the objective function. At one extreme, we include the tax revenues in the objective

function. This captures two possible real life scenarios: either there is a collusive agreement

across the industry to charge a surcharge (note that from the tourist�s point of view paying

a dollar tax or paying a dollar higher price is equivalent), or there is a social planner who

1Note that we use the term congestion as equivalent to �negative crowding�, a term more commonly

used in the leisure literature; see Shelby et al., 1989.
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is maximizing the sum of industry pro�ts and tax revenues. At the other extreme we stack

the deck against taxes by assuming that all the tax revenues are forgone, say they are

collected by an external authority that spends them somewhere else. Could it then be that

the tourism industry would still wish to lobby to have a tourist tax imposed on it? We

show that the answer is a quali�ed yes.

More precisely, when the tax revenues have high enough weight in the objective function,

taxes are optimal even if the segments are isolated (the congestion generated by L-tourists

on H-tourists, c, is zero).2 The destination can extract more from the tourists as a com-

bination of pro�ts and tax revenues, despite the cannibalizing e¤ect of the latter on the

former. As the externality grows from zero, the optimal per-tourist tax increases in the

L segment and decreases in the H segment. The higher tourist tax decreases the demand

and arrival of tourists with low WTP who search for low quality products (that is, tourists

from the L segment). This reduces congestion, making the destination more attractive for

tourists with a higher WTP and looking for high quality products (from the H segment).

This, in turn, allows for a lower optimal per-tourist tax in the H segment. As c continues

to increase, the optimal tax in the L segment continues to increase as well, but now in the

H segment it is recovering towards its initial value. This is because the congestion reducing

e¤ect of the tax in the L segment is becoming larger. Finally, if c reaches a critical value,

the L segment is optimally taxed out of the destination and the optimal H-segment tax

returns to its original value (when c = 0).

When the tax revenues are mostly lost, in the absence of cross-segment externalities

the optimal tax for both segments is zero. Hence, even with cross-segment congestion, the

H-segment is never taxed. Remarkably, however, there is room for taxing the L segment.

In fact, the best solution is often an extreme: if the WTP of the L segment tourists is a

su¢ ciently low proportion of the WTP of the H tourist and the di¤erential sensitivity to

congestion is su¢ cently high then it is optimal to close the L segment. Otherwise, however,

the optimal tax is zero, and thus taxes cannot increase aggregate pro�ts.

1.1 Related literature: overtourism and tourist taxes

As Peeters et al. (2018) state in their Report for the European Parliament, overtourism can

be de�ned as �the situation in which the impact of tourism, at certain times and in certain

2For simplicity, we assume that the extrenality from H tourists to L tourists is zero, so c is also the

measure of the di¤erence between the two directions of inter-segment congestion externality.
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locations, exceeds physical, ecological, social, economic, psychological, and/or political

capacity thresholds.�Overtourism is linked to tourist numbers, the type and time frame of

their visit, and a destination�s carrying capacity, but the perspectives on overtourism may

of course vary among its various stakeholders, such as residents, tourists, or businesses.3

The focus of our analysis is in particular on the negative e¤ect that overtourism may have

on the tourist experience, on the loss it may cause in the destination attractiveness, leaving

out of the analysis its impact on other stakeholders, residents for instance (McKinsey &

Company & World Travel & Tourism Council, 2017).

There is indeed evidence of the e¤ect that tourist density at a destination has on the

tourist experience, congestion or crowding as it is usually called in the leisure literature

(Shelby et al., 1989). Research has shown that (perceived) crowding is a psychological

construct, and while people might consider crowds stressful in speci�c contexts, they may

appreciate in a positive light social density in other environments, for instance in mass

events such as festivals (Jacobsen et al., 2019).

As it will become clear in our analysis, the rationale for a tourist tax appears when

tourist density (the number of tourists) generates congestion, namely, a situation in which

a place is too blocked or crowded, diminishing the tourist experience. As Gago et al. (2009)

explain, this includes congestion and environmental costs such as pollution and unpleasant

aesthetics that are an input for the tourist sector: �mass tourism may diminish the quality

of the tourist experience through congested and overcrowded facilities, psychological stress

on local users and visitors, and faster deterioration of natural resources and public services,

resulting in . . . the loss of aesthetic value�(Gago et al., 2009). There are several papers

studying the impact of overtourism on the tourists epxerience. Jurado et al., 2013, do so

in the Costa del Sol in Malaga (Spain), showing that 26% of its tourists interviwed view

the destination as having too many tourists. This is to our view a large and signi�cant

number, specially considering that these are the ones with a higher income and WTP, and

also that many of the tourists more negatively a¤ected by crowding likely stopped visiting

the destination. Tokarchuk et al. (2022) show that for the city of Berlin positive emotions

to crowding show an inverted U shape in the number of tourists, while negative emotions

show a U shape.4 Our prescription for a tourist tax will be valid for those destinations at

3A de�nition of carrying capacity of tourism was developed referring to the maximum quantity of

tourists being present in a destination without their activities becoming intolerable to host communities

and without preventing fellow tourists from appreciating the destination (McCool & Lime, 2001; Saveriades,

2000).
4Other studies��ndings are less clear cut on whether crowding should always be considered negative.
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the decreasing (increasing) end with regards to positive (negative) emotions.

While to our view tourist taxes are given too little consideration in the policy debates

on how to address overtourism, there is a relatively abundant academic literature studying

them (see PwC, 2017, for an overview of this literature). Gago et al. (2009) explain that

(indirect) tourism taxes can be justi�ed on three grounds: (i) revenue-raising objectives,

(ii) coverage of conventional costs of public services, and (iii) internalization of external

costs. Our analysis shows that the three rationales may indeed be complementary when

congestion e¤ects are large enough.

We are not of course the �rst ones to point out the role that tourism taxes can play in

a context of congestion e¤ects. Gago et al. (2009) themselves state that �tourism taxes

could have signi�cant direct e¤ects on the quality of tourism demand and the magnitude

of the added value generated by the sector through reduced congestion and an increased

willingness to pay by tourists�. Pintassilgo and Silva (2007) even analyze formally the

tragedy of the commons present in a tourism destination because of environmental exter-

nalities, and point to the potential role that taxes can play in addressing the tragedy of the

commons. But neither of these papers nor any other one to our knowledge do what we do,

a formal study of the role that a per-person tourist tax can play with regards to increasing

the destination industry�s pro�ts. As mentioned in the Introduction, the likely reason for

this hyatus is that in a one-segment market the taxes we are considering are never optimal

(abstracting away from other stakeholders, as we do).

Academic research on the tourist tax has to a large extent been empirical, analyzing

for instance the e¤ect that such a tax may have on a destination�s demand (studying the

price elasticity of the destination�s demand). As an example, Aguiló et al. (2005) evaluate

the e¤ect of the tax approved in the Balearic Islands on the destination�s demand (see also

Adedoyin et al. 2023, and Gooroochurn and Sinclair, 2005, for examples of similar analysis

in other destinations). Gago et al. (2009) apply tourist taxes in a general equilibrium

model of the Spanish economy so as to study their e¤ect and assess the relative merits

of a �xed versus a value added tax. Logar (2010) discusses the appropriateness of an

eco-tax in Crikvenica (Croatia), among other policy tools, with common arguments about

its usage as a way to �enhance the environmental quality of Crikvenica�. Other papers

Neuts and Nijkamp, 2012, for instance, �nd that in Bruges �only�18% of the interviewed gave a negative

opinion. However, these are mostly one (or two) days visitors, and the study also likely faces a bias in the

sample as in the other cases: those tourists more negatively a¤ected by the overtourism of the destination

will likely not be visiting it.
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analyze the potential role that taxing tourism might play in the context of the Dutch

disease attributed to a growing tourism sector (see Sheng, 2011; Chang, Lu and Hu, 2011,

for empirical analysis, and Inchausti-Sintes, 2015, for a general equilibrium model analysis).

A recent report on The Impact of Taxes on the Competitiveness of European Tourism

was written for the European Comission (PwC, 2017). It is shown how the occupancy

tax, closest to the tourist tax in our analysis, ranges from 0.5e in various countries to

up to 7e per person/day in Italy, mostly being closer to the lower end of the interval.

For instance, in Crikvenica the occupancy fee was between 0.27 and 0.95 e per person/day

(Logar, 2010). As it is stated, �the stakeholders interviewed stated that the tourist tax does

not have a noticeable e¤ect on the number of tourist arrivals or seasonality issues�(Logar,

2010). Keep in mind also that value-added taxes in the tourism industry are usually well

below the general levels; in Spain, for instance, tourism value added �for accommodation

and restaurants � is at the 10%, well below the general level of a 21% (PwC, 2017). It

seems clear that in order to have signi�cant e¤ects on congestion, a tourist tax should

be signi�cantly higher than the levels currently enacted in most European countries (and

other tourism destinations).

The rest of the paper is organized as follows. We �rst present the model in Section

2 and then in Section 3 charcaterise the market equilibrium. Section 4 discusses optimal

taxes for the industry considering two alternative scenarios (or objective functions): pro�ts

with and without tax revenues. Section 5 provides concluding remarks.

2 The model

We represent a tourist destination by two interconnected market segments for accommo-

dation.5 In the high category (H) segment there are nH �rms and in the low category (L)

segment there are nL (> nH) �rms. For simplicity, we assume that, within a category, �rms

are identical, have no (binding) capacity constraints, have no �xed costs and have constant

(zero) marginal cost of production. They compete à la Cournot:6 each �rm i (in segment

j = H;L) simultaneously and independently sets the quantity of tourists it is willing to

5This may include hotel accommodation as well as rental �ats (via AirBnb), etc.
6We assume competition in quantities instead of prices to ensure that the �rms have positive pro�ts. As

shown by Kreps and Scheinkman (1983) �and later generalized by Burguet and Sákovics (2017) �, Cournot

competition is equivalent to a two-stage model where �rms �rst invest in capacity and then compete in

price. Consequently, Cournot competition is justi�ed, if we think of �rms �rst building capacity and

subsequently competing in price.
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serve: qij. The aggregate quantity of lodging available in segment j is then Qj =
P

i2j q
i
j.

As the prices adjust to clear each market segment, all the lodging o¤ered is taken and the

total mass of tourists visiting the destination is Q = QH +QL.

There is a continuum of consumers, divided into two groups depending on which cat-

egory of lodging they wish to consume. That is, to avoid the complication of considering

consumers switching between markets, we assume that which segment a consumer belongs

to is exogenously �xed.7 As we will see, this assumption actually strengthens our main

result.

The net utility potentially obtained in segment j by both types of consumer is

uj = rj � pj � bj
��a0j �Qj��� cj max fQ�j � a�j; 0g ; (1)

where rj stands for the gross utility derived from a hotel of category j, pj is the market-

clearing price and bj and cj measure the consumers�sensitivity to congestion in their own

segment and in the other segment, respectively. a0j is the optimal amount of fellow tourists:

within segment they wish to have more "company" below this level, and less above it; while

across segment, they are not bothered by the �rst a�j measure of tourists.8 As our focus is

on a mature destination su¤ering from congestion, we will restrict attention to parameter

con�gurations such that �absent any intervention �the equilibrium measure of tourists

exceeds the optimal value: we have "overtourism". That is, a0j � Qj and a�j � Q�j, and
consequently, (1) can be simpli�ed to

uj = rj � pj � bj
�
Qj � a0j

�
� cj (Q�j � a�j) : (2)

Obviously, rH >> rL. It is also reasonable to assume that cH > cL: guests of high

category hotels appreciate relative exclusivity more than those of low category. In order to

signi�cantly simplify the analysis,9 we take this observation to the limit and assume cL = 0

(and cH = c = cH � cL): only tourists visiting the H segment are a¤ected by inter-segment
congestion, so c actually measures the di¤erence in inter-segment sensitivity to congestion.

7The idea is that H consumers have no demand for L lodging, while the (equilibrium) price of H lodgings

exceeds the valuation/budget of L consumers.
8Note that, if aj = a0�j = 0, then the utility function simpli�es to

uj = rj � pj � bjQj � cjQ�j :

9The unilateral inter-market externality avoids having to look for a �xed point, what in turn would lead

to very complicated expressions (solutions to a system of two cubic equations).
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Finally, let Dj(y) denote the (inverse) demand function of tourists in segment j, mea-

sured in net utility�and therefore upward sloping10 �instead of price, to be able to account

for the externalities. That is, if coming to segment j of the destination reports a net utility

of uj = Dj(y) to a representative tourist, then measure y tourists will come. Putting it an-

other way, the measure of tourists in segment j with an outside option of at mostDj(y) is y.

In reality, these functions are likely to be convex, growing to an asymptote (corresponding

to the total amount of potential tourists in the segment). The relevant characteristic is that

the two curves do not cross: there are more budget-constrained tourists with opportunity

cost below any value. To capture this while maintaining tractability, we assume that the

demand function of tourists is linear: Dj(y) := sjy.11 Note that a higher sj corresponds to

a steeper supply curve and thus fewer potential tourists from the j segment. Since in reality

the budget-constrained segment is larger, we assume that sH > sL. It is also reasonable to

assume that intra-segment sensitivity to congestion is higher in the H segment: bH > bL.

3 The market equilibrium

In this section we solve the benchmark model, in the absence of any intervention. We

start by deriving the number of tourists that each segment will serve in equilibrium. The

outcome of the L segment corresponds to a standard independent Cournot equilibrium

(modi�ed by the intra-segment externality). The H segment, however, is a¤ected by the

congestion generated by the L segment and thus it clears as a function of the outcome in

the L segment.

The marginal tourist in each segment is indi¤erent between his outside option and

visiting our tourist destination: sjQj = uj. Letting Rj = rj + a0jbj, from (2), the demand

function in segment j is given by

pj = Rj � cj (Q�j � a�j)� (sj + bj)Qj: (3)

Note that an increase in the amount of tourists in the segment decreases the equilibrium

willingness to pay at two margins: the externality margin, captured by bj, and the entry

margin (for more tourists to come � that is, give up their outside options � their net

10In fact they could be interreted as "tourist-supply" functions.
11The fact that we ignore the asymptotes does not matter: it will never be the case that all the potential

tourists visit the destination. In fact, due to the upper bound on the utilities achievable, de maximu

measure of tourists considered will be rj
sj
:
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utility must be higher, so ceteris paribus the price must decrease), captured by sj. Due

to the linearity of our model, these values simply add up: the sensitivity to intra-segment

congestion is a perfect substitute for the slope of the supply curve of tourists.

From (3) the following proposition can be directly obtained (see the detailed proof in

the Appendix). Let Mj =
nj

(sj+bj)(nj+1)
.

Proposition 1. The equilibrium number (measure) of tourists visiting each segment is12

Q�L (RL) =MLRL and Q�H (RH) =MH (RH � c (Q�L � aL)) :

As expected, both markets sell higher quantities when there are more �rms, nj, or

when their customers have higher intrinsic valuations, rj or higher (but below the actual)

optimal level of intra-segment congestion, aj. We can also observe that the sensitivity to

intra-segment congestion and the slope of the (inverse) demand curve of tourists have a

negative e¤ect:13 both bj and sj decrease the amount of tourists willing to come, ceteris

paribus. In the H segment we have the additional e¤ect that the intrinsic valuation of

tourists, rH , is lowered, in proportion to the equilibrium measure of L tourists weighted by

the inter-segment congestion sensitivity, c.

Knowing the equilibrium quantities, we can read o¤ from the "tourist-supply curves",

Dj(y), the utility obtained by a representative tourist in each segment.

Corollary 1. The equilibrium utilities obtained by the tourists are

u�L = sLQ
�
L = sLMLRL

and

u�H = sHQ
�
H = sHMH (RH � c (Q�L � aL)) :

By construction, the more tourists decide to visit, the higher is their utility as they have

to give up higher outside options. The rest of the comparative statics coincide with those

of the aggregate quantities in each segment. The negative relation between the H tourists�

wellbeing and the quantity of L tourists is salient.

Given the equilibrium quantities, via the demand curve (3), we can also easily obtain

the equilibrium prices.

12We assume that rH is high enough so that Q�H > 0.
13Note that our overtourism assumption ensures that the positive e¤ect of bj in Rj is more than com-

pensated by the negative e¤ect in Mj .
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Corollary 2. The equilibrium prices in each segment are

p�L =
RL

nL + 1
and p�H =

RH � c (Q�L � aL)
nH + 1

:

Prices in a segment decrease in the number of �rms and increase in the consumer

valuation, as standard. The H segment�s price also decreases in c (Q�L � aL), reacting to the
negative externality. Due to linearity, prices are independent of the supply characteristics

of tourists (sj). Finally, prices are increasing in the valuation of (at least) the optimal

group size (bj).

Multiplying prices and quantities, we can calculate the aggregate pro�ts that each

segment makes in equilibrium.

Corollary 3. In equilibrium, per segment aggregate pro�ts are

��L (RL) = Q
�
Lp

�
L =

nLR
2
L

(sL + bL)(nL + 1)2

and

��H (RL; RH) = Q
�
Hp

�
H =

nH (RH � c (Q�L � aL))
2

(sH + bH)(nH + 1)2
:

The within segment comparative statics are as expected: in the L-segment aggregate

pro�ts are increasing in the consumers� valuation but they are decreasing in L-tourist

scarcity, and in the number of competing �rms. If aj is su¢ ciently low,14 pro�t is also

decreasing in intra-segment sensitivity to congestion. In the H segment we have the same

e¤ects, complemented by the negative e¤ects of inter-segment consumer sensitivity to con-

gestion, and the quantity of L tourists.

Most importantly for the subsequent analysis, dQ
�
L

drL
> 0 implying that d��H(RL;RH)

drL
< 0.

The H �rms would bene�t from a decrease in the L tourists� valuation of the L �rms�

product, despite the fact that we have assumed away competition between the two segments

for tourists. The mediator is once again congestion: if they value those �rms less, fewer of

them will come, what will decrease congestion.

4 A tourist tax

Having described how the free market works, in this section we investigate the e¤ects on

industry pro�ts (at the destination) of imposing �xed amounts of taxes to be paid by each

14Given that price pj is increasing in bj , Qj > aj is no longer su¢ cient.
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tourist in each segment. The question we wish to explore is: under what circumstances �

if any �will such a tax bene�t the industry as a whole, namely by increasing the aggregate

pro�ts across the two segments? In our main treatment we assume that the tax revenue

is considered �lost" to the local industry: it is imposed by the government and spent on

unrelated issues. In the next subsection, we investigate how our results change if the tax

revenues revert to the local industry.

The key observation towards �nding the e¤ects of a tourist tax is that a tax of tj is

equivalent to a reduction of the intrinsic valuation by tj: valuing at rj � tj is the same
as valuing at rj and having to pay tj. Thus, the industry chooses the taxes (tL; tH) that

maximize

�(tL; tH) = �L (RL � tL) + �H (RL � tL; RH � tH) : (4)

Let A = RH
MLRL�aL and B =

(nH+1)(MLRL+aL)
(nL+1)MHML(MLRL�aL) .

Proposition 2. The optimal taxes are t�H = 0, and

t�L =

(
RL � aL

ML
, if c > A�

p
A2 �B

0, otherwise.15

First, it is optimal not to tax the high segment. This is intuitive as, as we can see from

(??), the pro�ts of the H segment are decreasing in tH while those of the L segment are

independent of it. This result is less obvious than it may sound at �rst sight. The reason is

that in the non-cooperative Cournot equilibrium the �rms ignore the negative externality

imposed on their competitors when increasing their supply. Consequently, the equilibrium

leads to oversupply from the point of view of industry (segment) pro�ts. A typical case

of the �tragedy of the commons�. Imposing a tax leads to a reduction in quantities what

ceteris paribus would increase pro�ts via higher prices. However, the taxes also impact on

the prices directly, since the consumers�valuation decreases. The second e¤ect outweighs

the �rst, and pH actually decreases with tH (together with QH).

The optimal tax in the L segment is di¤erent, due to the additional e¤ect it has on

the pro�ts of the H segment. As we have seen the H segment�s pro�ts are decreasing in

RL and, consequently, they are increasing in tL , as long as QL > aL. Of course, just as

with the H segment above, the L segment�s pro�ts are decreasing in tL. Consequently, it

never pays to increase taxes above the level that would lower QL to aL.16 Otherwise, the

trade-o¤ depends on the strength of the externality, c, and on the relative pro�tability of

16If Q�L < a
0
L to start with, the optimal tax is t

�
L = 0.
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the two segments. If the H segment (absent externality) is su¢ ciently more pro�table than

the L segment,17 and c is su¢ ciently high, then it is optimal to restrict the L segment to

QL = aL. Otherwise, no tax can increase industry pro�ts (t�L = 0). As natural, the need for

the restriction is the less likely, the higher the lower bound for the cross-segment congestion

externality, aL is.

Note that we have a bang-bang solution: either no tax or �full�tax. This is a conse-

quence of the convexity of the pro�t function in the consumer�s WTP and �consequently

�also of the tax, which is just a reduction of the former. This convexity comes from pro�ts

being the product of price and quantity, both of which are proportional to Rj � tj. Con-
vexity implies that if it is a good idea to raise taxes to a certain level, it is an even better

idea to increase them further. The question then boils down to the comparison of the two

extreme values. This comparison is a function of c.

A key issue of concern is what happens to the amount of tourists visiting the destination

when the L segment is restricted. Does the intervention decrease the externality on other

stakeholders, not incorporated into our model? It is obvious that QL decreases, from Q�L

to aL, while QH increases, but how do the magnitudes of change compare? The following

corollary clari�es.

Corollary 4. When the tax intervention is implemented, the change in the measure of

tourists visiting each segment is �QH = cMH (MLRL � aL) and �QL = � (MLRL � aL).
Consequently,

����QH�QL

��� = cMH .

For example, if we wish to account for carbon footprints, this means that if the carbon

footprint of a tourist visiting the H segment is x times that of tourist visiting the L segment,

the tax reduces total carbon emission if and only if xcMH < 1. While at �rst it may

sound surprising, a low sensitivity to congestion is �good� since the number of extra H

tourists is proportional to the size of the externality that the intervention eliminates, what is

proportional to c. Other than that, we need a less competitive market with high �elasticity

of demand�(sH).

In a parallel manner do the utilities derived by the tourist vary, as their utility is directly

proportional to their equilibrium quantity via their �supply� function Dj(Qj). That is,

despite the price hike, H tourists are better o¤ without the inter-segment externality (and

in addition more of them will come who make a gain relative to the outside option they were

taking beforehand). At the same time the L tourists are hurt�as the price is lowered by less

17It is easy to see that A2 > B is equivalent to ��H > �
�
L �

(a0L)
2

(nL+1)ML
.
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than the tax �, on two margins: �rst, some of them will choose their outside option instead

but these options will be lower than the utility they would have derived from visiting our

destination before the tax was imposed; second, those who continue to come will derive a

lower utility than before.

4.1 Keeping the tax revenue

An interesting question is what happens if the tax revenues are included in the objective

function. This may happen either because the public authority setting the tax invests it

in a way to bene�t the industry, or because the tax is self-imposed: say, it is the hotel

federation that collects a surcharge. As before the e¤ect of the tax can be fully captured

by a decrease in the tourist valuation. Thus, the objective function becomes

��L (RL � tL)+��H (RL � tL; RH � tH)+ tLQ�L (RL � tL)+ tHQ�L (RL � tL; RH � tH) : (5)

Proposition 3. If aL � RL
2(sL+bL)

then tL =
RL(nL�1)

2nL
and tH = (nH�1)RH

2nH
. Otherwise,

if c > 2
q

sL+bL
sH+bH

then tL = RL � aL
ML

and tH = (nH�1)RH
2nH

; if c � 2
q

sL+bL
sH+bH

then tL =

RL
nL�1
nL+1

+ 1
2
c(sH+bH)(RH+c(aL�MLRL))

2ML(sL+bL)� 1
2
c2ML(sH+bH)

and tH =
(nH�1)(RH�c(ML(RL�tL)�aL))

2nH
.

The most striking di¤erence with respect to the previous section is that when tax

revenues are retained, it becomes worthwhile to tax the H segment as well. The trade-o¤ is

the same as before, but the tax revenues tip the balance in favor of restricting capacity. If c

is su¢ ciently high, it is again optimal to restrict the L segment to QL = aL, otherwise it is

taxed but it still generates negative externalities on the H segment. tL is strictly increasing

in c until it reaches rL, in the meantime tH is U-shaped, taking the same value both at

c = 0 and the value of c at which tL = rL. The key observation here is that it is always

optimal to increase taxes from their base value (for c = 0) in the L segment, and the more

so the higher the di¤erential sensitivity to congestion is. If the latter is su¢ ciently high

then it is optimal to restrict QL to aL.

On the other hand, as c increases it is optimal to decrease the �scal pressure on the

H segment. In other words, if we were to consider only the change in taxation due to the

externality, the H segment should receive a tourist subsidy! The reason, comes from the

amount of the externality. As c grows from zero to, the externality, cQL, �rst grows from

zero (when c = 0) and then reaches zero again (when QL becomes zero, due to the tax

reaching rL). This inverted U shape is then re�ected in the optimal tax for the H segment:

13



when the externality is strong it is optimal to compensate for this demand reducing e¤ect

by lowering the tax.

5 A numerical illustration

To illustrate the above �ndings, let us put some values to the parameters. For example, let

rL = $200; rH = $600; nL = 9; nH = 2; sL = bL = $1; sH = $4; bH = $1:

We then have that in the baseline model

Q�L = 90 and Q
�
H = 80� 12c;

u�L = sLQ
�
L = $90;

u�H = sHQ
�
H = $ (320� 48c) ;

p�L = $20 and p
�
H = $(200� 30c);

�L = Q
�
Lp

�
L = $1; 800

and

�H = Q
�
Hp

�
H = $(200� 30c) (80� 12c) = $

�
16; 000� 4; 800c+ 360c2

�
:

With � = 0;

a =
20

3
and b =

r
400

9
� 5

and therefore the lower bound on c for intervention (closing down the L segment) to be

optimal is

a� b = 20�
p
355

3
� 0:386:

With � = 0:5, t�H = 0. If c � 2: 212 4
p
0:452 � 0:090 4 = 1: 330 4

t�L = $
600 + 4

9
c (600� 90c)

8� 0:2c2 ;

otherwise the L segment is closed down.
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With � = 1 the cut-o¤ is bc = 3:333
The optimal taxes are

t�L = $
1000 + c (300� 45c)

9� 9c2

40

and

t�H = $
300� 25c
2� c2

20

:

A graph illustrates

0 1 2 3

100

120

140

160

180

200

c

t

A = (3��2)
2(3��1) , B =

9
20
, C = 2

45
, and D = 2�2

20(3��1)

�rst �: 2+10
2
45
c2 9

20

20
= 0:226 c2 + 0:1

0:226 c2 + 0:1 = x, Solution is: 2: 212 4
p
0:904x� 0:090 4;�2: 212 4

p
0:904x� 0:090 4

limit second interval: rL(�(nL+1)�2)+Cc(rH�BcrL)(nL+1)
2(�(nL+1)�1)�BCc2(nL+1) = rL, Solution is: 1

C
�
rH
rL =

�45
6

limit last interval: �rL
2DrH

= �

6 2�2

20(3��1)
= 1

12�
(60�� 20)
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6 Concluding remarks

We have shown that a tourist tax may contribute to industry pro�t in a congested des-

tination. In particular, it is optimal to tax the tourist segment with lower willingness to

pay so as to reduce congestion and, therefore, turn the destination as a more attractive

point for high WTP tourists. Such as a tax policy is likely to be optimal in a context of

high sensitivity to congestion and when the high H-segment is potentially abundant and

shows a signi�cantly higher WTP than that of tourists with lower WTP. The analysis has

characterized optimal tax policy for the industry pro�ts showing, among other things that

a tax may increase industry pro�ts even net of tax revenues.

For tractability we have restricted our model to two segments with identical �rms in

each. In principle, we could extend the model to a series of segments and then the choice of

which segments are tax free, which are taxed partially and which are taxed till they create

no externality could be determined as (a very complicated) function of the parameters.

Finally, in this paper we focussed on short term behavior. It would be interesting to

consider exit, entry or even category change as a result of the taxes, endogenizing the

number of �rms in each segment.
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7 Appendix

Proof of Proposition 1: From (3), in a symmetric equilibrium each �rm in segment L

maximizes (in q)

q (RL � (sL + bL) ((nL � 1)q�L + q))

This leads to the �rst-order condition18

RL � (sL + bL) (nL + 1)q�L = 0;

leading to

q�L =
RL

(sL + bL)(nL + 1)
:

In turn, each �rm in segment H maximizes

q (RH � (sH + bH) ((nH � 1)q�H + q)� c (Q�L � aL)) ;

leading to

q�H =
RH � c (Q�L � aL)
(sH + bH)(nH + 1)

:

Multiplying the per-�rm quantities by the number of �rms in each segment, we obtain the

result.

Proof of Proposition 2: Substituting from Corollary 3 into (4) the maximand be-

comes

� =
ML (RL � tL)2

nL + 1
+
MH

�
RH � tH � c [ML (RL � tL)� aL]+

�2
nH + 1

(6)

subject to tL 2 [0; RL] and tH 2
�
0; RH � c [ML (RL � tL)� aL]+

�
.

Let us �rst calculate the optimal tH given an arbitrary tL. The derivative of (12) is

d�

dtH
= � 2MH

nH + 1

�
RH � tH � c [ML (RL � tL)� aL]+

�
< 0:

Consequently, the optimal tax in the H segment is zero. Substituting tH = 0 into (12) we

obtain the objective function

ML (RL � tL)2

nL + 1
+
MH

�
RH � c [ML (RL � tL)� aL]+

�2
nH + 1

: (7)

18The second-order condition is also satis�ed.
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If [ML (RL � tL)� aL]+ > 0, the �rst derivative of (19) with respect to tL is (we divide

through by 2ML > 0)

� (RL � tL)
nL + 1

+
cMH (RH � c (ML (RL � tL)� aL))

nH + 1
; (8)

while the second-order condition is

1

nL + 1
+
MLMH

nH + 1
c2 < 0:

This is never satis�ed, the objective function is convex. Then the optimal solution must

be a corner: either tL = 0 or [ML (RL � tL)� aL]+ = 0.
When [ML (RL � tL)� aL]+ = 0, the derivative of the objective function is negative, so

we must have the lowest tax that leads to [ML (RL � tL)� aL]+ = 0 : tL = RL� aL
ML
.19 This

implies Q0L = ML (RL � tL) = aL. Comparing (19) evaluated at the two possible values,

we see that it is optimal to keep the L segment to its maximal size such that it does not

impact on the H segment, if and only if

(aL)
2

ML (nL + 1)
+

MH

nH + 1
R2H >

MLR
2
L

nL + 1
+

MH

nH + 1
(RH � c (MLRL � aL))2 : (9)

Note that (22) can be rewritten as,

0 >
MLR

2
L

nL + 1
� (aL)

2

ML (nL + 1)
� 2 MH

nH + 1
cRH (MLRL � aL) +

MH

nH + 1
c2 (MLRL � aL)2 :

This is satis�ed in between the roots (in c) of

MLR
2
L �

(aL)
2

ML

(nL + 1)
MH

nH+1
(MLRL � aL)2

� 2cRH
MLRL � aL

+ c2 = 0:

The roots are

A�
p
A2 �B:

Since B is positive, the lower root is positive as well. The higher root is irrelevant, too

high sensitivity to congestion cannot lead to less tax on the market creating the negative

externality.

19Recall that, since we assumed overtourism in the absence of taxes, this value is positive.
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Proof of Proposition 3

� =
ML (RL � tL)2

nL + 1
+
MH

�
RH � tH � c [ML (RL � tL)� aL]+

�2
nH + 1

+

tLML (RL � tL) + tHMH

�
RH � tH � c [ML (RL � tL)� aL]+

�
= ML (RL � tL)

RL + nLtL
nL + 1

+MH

�
RH � tH � c [ML (RL � tL)� aL]+

� RH + nHtH � c [ML (RL � tL)� aL]+

nH + 1
:

Di¤erentiating with respect to tH we obtain

MH

nH + 1

�
(nH � 1)

�
RH � c [ML (RL � tL)� aL]+

�
� 2nHtH

�
:

As the second derivative is clearly negative, we have the �rst-order condition

(nH � 1)
�
RH � c [ML (RL � tL)� aL]+

�
= 2nHtH :

Substituting into the objective function we have the new maximand as

ML (RL � tL)
RL + nLtL
nL + 1

+MH

�
RH � c [ML (RL � tL)� aL]+

�2 nH + 1
4nH

:

Assume ML (RL � tL) > aL. Di¤erentiating with respect to tL we obtain

ML

nL + 1
(RL(nL � 1)� 2nLtL) + cMLMH

nH + 1

2nH
(RH � c (ML (RL � tL)� aL)) :

The second-order condition is

�4 + c2 sH + bH
sL + bL

< 0:

Thus, if c < 2
q

sL+bL
sH+bH

;the objective function is concave and the �rst-order condition deter-

mines the solution, implying

tL =
RL

nL�1
nL+1

+ 1
2
c (sH + bH) (RH + c (aL �MLRL))

2ML (sL + bL)� 1
2
c2ML (sH + bH)

:

Otherwise, we have a corner solution: either tL = 0 or tL = RL � aL
ML
, but the second

case does not satisfy ML (RL � tL) > aL. If ML (RL � tL) � aL then the derivative of the
objective becomes

ML

nL + 1
(RL(nL � 1)� 2nLtL)

leading to

tL =
RL(nL � 1)

2nL
;
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what leads to the requirement that aL �ML (RL � tL) =ML

�
RL � RL(nL�1)

2nL

�
= RL

2(sL+bL)
.

***A TALLAR

LetA = (�(nH+1)�2)
2(�(nH+1)�1) , B =

nL
(sL+bL)(nL+1)

=
Q�L
rL
, C = nH

(sH+bH)(nH+1)2
, andD = nH�

2

4(sH+bH)(�(nH+1)�1) .

Note that they are independent of c, rH , and rL. We will prove the following result:

Proposition 2 The optimal taxes are

i If � � 2
nH+1

, then

a if c < �rL
2DrH

, then

t�L =

�
rL
2
�+ cD (rH �BcrL)

�
(nL + 1)� rL

(��Bc2D) (nL + 1)� 1

and

t�H =
A

2

2rH � �(nL + 1) (2rH �BcrL)
(Bc2D � �) (nL + 1) + 1

;

b if c � �rL
2DrH

, then t�L = rL and t
�
H = ArH :

ii If � < 2
nH+1

, then t�H = 0. Moreover,

a if � 2
�
2+(nL+1)Cc

2B
2(nL+1)

; 2
nH+1

�
, then

t�L = min

�
max

�
rL (� (nL + 1)� 2) + Cc (rH �BcrL) (nL + 1)

2 (� (nL + 1)� 1)�BCc2(nL + 1)
; 0

�
; rL

�
;

b otherwise, it is optimal to close down the L segment if�
rH

nH + 1

�2
nH

sH + bH
>

�
rL

nL + 1

�2
nL

sL + bL
(10)

and

c > a� b(> 0);

where

a =
rH(nL + 1) (sL + bL)

nLrL

and20

b =

s
a2 � (sH + bH) (sL + bL)

(nH + 1)
2

nLnH
: (11)

Otherwise, t�L = 0.

20(10) ensures that b is real.
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Proof: Substituting from Corollary 3 into (4) the maximand becomes

� =
nL (rL � tL)2

(sL + bL)(nL + 1)2
+

nH
(sH + bH) (nH + 1)2

�
rH � tH � c

nL (rL � tL)
(sL + bL)(nL + 1)

�2
+

�tLnL (rL � tL)
(sL + bL)(nL + 1)

+
�tHnH

(sH + bH) (nH + 1)

�
rH � tH � c

nL (rL � tL)
(sL + bL)(nL + 1)

�
;

subject to tL 2 [0; rL] and tH 2 [0; rH � cB (rL � tL)].21 This can be rewritten as

B (rL � tL)
�
rL + tL (�(nL + 1)� 1)

nL + 1

�
+ (12)

C (rH � tH � cB (rL � tL)) (rH � cB (rL � tL) + tH (�(nH + 1)� 1)) :

Let us �rst calculate the optimal tH given an arbitrary tL. The �rst-order condition

becomes (we divide through by C > 0)

d�

dtH
= (�(nH + 1)� 2) (rH � cB (rL � tL))� 2tH (�(nH + 1)� 1) = 0:

I. Suppose � � 2
nH+1

: Then the second-order condition is satis�ed and the optimal tax

is given by

tH(tL) =
(�(nH + 1)� 2) (rH � cB (rL � tL))

2 (�(nH + 1)� 1)
; (13)

what is clearly in (0; rH � cB (rL � tL)). Let us turn to the optimal tL. Substituting (13)
into (12) we obtain the objective function

B (rL � tL)
�
rL + tL (�(nL + 1)� 1)

nL + 1

�
+D (rH � cB (rL � tL))2 : (14)

The �rst-order condition becomes (we divide through by B > 0)

rL (�(nL + 1)� 2)� 2tL (�(nL + 1)� 1)
nL + 1

+ 2D (rH � cB (rL � tL)) c = 0; (15)

while the second-order condition is

BDc2 <
�(nL + 1)� 1
nL + 1

: (16)

Note that the derivative of (14) evaluated at tL = 0 is positive. Thus, the optimal tax is

always positive. Moreover, when either the second-order condition is violated, or �since

(14) is quadratic �when the derivative of (14) evaluated at tL = rL is positive, the optimal

21By Assumption 1 the intervals are nonempty.
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tax is tL = rL, e¤ectively closing down the L segment. Since convexity implies a positive

derivative at tL = rL, the condition for closing down is the one implying the latter

c � �rL
2DrH

: (17)

Substituting tL = rL into (13) we obtain the optimal tH .

Suppose (17) is not satis�ed. Then the derivative of (14) evaluated at tL = rL is negative

(and the objective function is concave). Solving (15) for tL, we obtain

tL =

�
rL
2
�+ cD (rH �BcrL)

�
(nL + 1)� rL

(��Bc2D) (nL + 1)� 1
; (18)

what �by construction �is in (0; rL).

Substituting (18) into (13) we obtain the optimal tH .

II. Suppose � < 2
nH+1

. Then, since we only consider tH � rH � cB (rL � tL),

d�

dtH
= (�(nH + 1)� 2) (rH � cB (rL � tL))� 2tH (�(nH + 1)� 1)

� (�(nH + 1)� 2) tH � 2tH (�(nH + 1)� 1) = �tH�(nH + 1) < 0:

Consequently, the aggregate pro�t is decreasing in tH and the optimal tax is tH = 0.

Substituting tH = 0 into (12) we obtain the objective function

B (rL � tL)
�
rL + tL (�(nL + 1)� 1)

nL + 1

�
+ C (rH � cB (rL � tL))2 (19)

The �rst derivative of (19) with respect to tL is (we divide through by B > 0)MISTAKE!

2tL (1� �(nL + 1))� (2� �(nL + 1)) rL
nL + 1

+ Cc (rH � cB (rL � tL)) : (20)

while the second-order condition is

2 (1� �(nL + 1))
nL + 1

+ Cc2B < 0:

This is satis�ed when

� >
2 + (nL + 1)Cc

2B

2(nL + 1)
:

Then, solving the �rst-order condition, we obtain

tL =
rL (� (nL + 1)� 2) + Cc (rH �BcrL) (nL + 1)

2 (� (nL + 1)� 1)�BCc2(nL + 1)
: (21)
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As the tax cannot exceed rL �and the objective function is quadratic in tL �the optimal

tax is the minimum of rL and the solution to the �rst-order condition.

If � � 2+(nL+1)Cc
2B

2(nL+1)
then the optimal solution must be a corner: either tL = 0 or tL = rL.

Comparing (19) evaluated at the two possible values, we see that it is optimal to close down

the L segment if and only if

Cr2H > B
r2L

nL + 1
+ C (rH � cBrL)2 : (22)

Note that (22) can be rewritten as,

0 >
rL

nL + 1
� 2CcrH + Cc2BrL:

This is satis�ed in between the roots of

1

(nL + 1)BC
� 2crH
BrL

+ c2 = 0:

The roots are
rH
BrL

�

s�
rH
BrL

�2
� 1

(nL + 1)BC
;

what is the same as a � b in the statement of the proposition. The roots are real �and
a > b �if and only if �

rH
BrL

�2
>

1

(nL + 1)BC

or

Cr2H >
Br2L
nL + 1

;

what is the same as (10).

Proof of Corollary ??: By de�nition

g =

�
rH

nH+1

�2
nH

sH+bH�
rL

nL+1

�2
nL

sL+bL

:

Note that

a2 =

�
rH(nL + 1) (sL + bL)

nLrL

�2
= g

(nH + 1)
2 (sH + bH) (sL + bL)

nLnH
:
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As the term multiplying g is the same as the negative term in (??), the latter can be written

as

b = a

r
1� 1

g
;

leading to the lower bound on c being

a

�
1�

r
1� 1

g

�
:

Finally, note that a = rH
Q�L
.
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