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1. Introduction

Demand elasticities influence many features of a differentiated products market, such as the magnitude

of markups and the impact of policy changes (Berry and Haile 2021). However, it is difficult to estimate

elasticities from consumers’ purchases alone. It helps to have data concerning the extent to which unpurchased

goods are substitutable for purchased ones. If someone’s preferred good is unavailable, which (if any) of

the unpurchased goods would she prefer to the “outside option” of buying nothing? And of these acceptable

substitutes, which would she prefer most? Information of this kind—hereafter, alternate-choice data—

provides direct evidence of product substitutability (Berry, Levinsohn, and Pakes 2004). By requiring a

demand system to reproduce the substitution patterns in alternate-choice data, the researcher obtains more

precise estimates of the random coefficients that determine demand elasticities.

Workhorse demand systems sometimes fail to replicate important substitution patterns in alternate-choice

data. In particular, demand systems tend to underestimate the substitutability of the closest substitutes while

overestimating the substitutability of more distant ones (Conlon and Mortimer 2010). This paper studies a

possible source of this bias: the restrictions placed on products’ substitutability by conditional and mixed

logit. I show that conditional logit imposes independence between consumers’ purchases and their pairwise

preferences among unpurchased goods. In other words, an individual consumer’s purchase choice should

be uninformative of her preferences among the unpurchased goods—even if some of them are much closer

substitutes for the purchased good than others are. As for mixed logit, this (more flexible) model accom-

modates cross-sectional variation in preferences among unpurchased goods. However, I show that mixed

logit still imposes conditional independence between consumers’ purchases and their pairwise preferences

among unpurchased goods, given the realizations of the (consumer-specific) random taste coefficients. Put

differently, a consumer’s purchase on a particular shopping trip should be uninformative of trip-specific

factors influencing both her purchase choice and her preferences among the unpurchased goods. Hereafter, I

refer to the preceding independence constraints as the independence of preferred alternatives (IPA) properties

of conditional and mixed logit, respectively.

To what extent do the IPA properties of conditional and mixed logit affect estimated demand elasticities?

To provide insight, I analyze novel alternate-choice data from curbside grocery pickup. This is a “click-and-

collect” mode of online shopping in which consumers order groceries online and later pick them up from a

bricks-and-mortar supermarket. Sometimes, however, an ordered item goes out of stock, in which case the
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consumer must choose between (i) purchasing a store-selected substitute and (ii) purchasing nothing.1

Focusing on the product categories of bottled water and flour, I provide descriptive evidence that consumers’

choices to accept (i.e., purchase) or reject (i.e., not purchase) stockout substitutes are inconsistent with the

IPA property of conditional logit. As for the IPA property of mixed logit, I find that the choices of bottled

water buyers are consistent with the property, whereas those of flour buyers are not. Concerning the latter

product category, individual consumers’ preferences appear to vary between trips, perhaps due to variation

in the type(s) of recipes they plan to bake. However, this within-consumer preference variation is excluded

by the mixed logit IPA.

To quantify the bias resulting from the IPA property of mixed logit, I estimate demand using two models:

mixed logit and mixed probit (a model that does not display an IPA property). Then I compare the models’

goodness of fit. Both within- and out-of-sample, mixed probit predicts the acceptance or rejection of stockout

substitutes more accurately than mixed logit does. Moreover, the disparity in model fit is larger for flour

than for bottled water. This is in keeping with the reduced-form evidence summarized above: namely, that

consumers’ purchases of bottled water are consistent with the IPA property of mixed logit, whereas their

purchases of flour are not.

The remainder of the paper proceeds as follows. Section 2 relates this study to prior literature. Section 3

reviews the standard differentiated products demand model developed by Berry, Levinsohn, and Pakes

(1995),2 and then formalizes the IPA properties of conditional and mixed logit. Both properties stem from

an unusual property of logit utilities:3 given that two goods’ utilities are both smaller than some constant 𝐾 ,

the conditional probability that one’s utility exceeds the other’s is identical to the unconditional probability

of the same.

Section 4 provides institutional details about curbside pickup and introduces the data. As far as stockout

substitutions are concerned, I observe the universal product code (UPC) of both the out-of-stock product and

the substitute. I also see whether the substitute is accepted (i.e., purchased) or rejected (i.e., not purchased).

Importantly, these data can be matched to panel data on the consumer’s past and future purchases at the store,

1In principle, the consumer could also enter the store in search of a better substitute. However, this is exceedingly rare with
respect to the product categories considered in this paper, namely, flour and bottled water. In 0% (0.6%) of cases in which the
consumer rejects a stockout substitute for a bottled water (flour) product, she enters the store afterwards to purchase a different
bottled water (flour) product.

2Unlike Berry, Levinsohn, and Pakes (1995), I abstract away from price endogeneity. I do so for two reasons. First,
unobserved “quality” is probably less important for the products studied in this paper—namely, bottled water and flour—than it is
for automobiles. And second, my demand specification is much more computationally burdensome than BLP 1995, as I employ a
semi-nonparametric estimator. It would be computationally challenging to adopt an IV (or even control function) approach.

3That is, utility functions in which the error term is distributed i.i.d. standard Gumbel (a.k.a. type I extreme value).
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enabling me to infer which products she tends to like (or dislike) within the relevant grocery category.

Section 5 presents descriptive evidence concerning the extent to which consumer behavior coincides with

the IPA properties of conditional and mixed logit. Under the conditional logit IPA, a consumer’s original

order choice should be independent of her willingness to accept a given product as a substitute. I employ

two strategies to test this prediction. The first is a likelihood ratio test of independence. In both product

categories, the null hypothesis of independence is strongly rejected (under reasonable assumptions). As for

the second strategy, it reframes the conditional logit IPA in terms of products’ observable characteristics

(such as brand or size). I explain that, under the conditional logit IPA, a substitute’s probability of acceptance

should be independent of whether its observable characteristics resemble those of the out-of-stock product.

For instance, a flour substitute should be no likelier to be accepted if it is the same type of flour as the out-of-

stock product (say, all-purpose flour) than if it is a different one (say, bread flour). However, this prediction is

not supported by the data. Rather, acceptance is likelier if the substitute’s observable characteristics resemble

those of the out-of-stock product than if they do not.

Turning to mixed logit, the IPA property of this (more flexible) model translates to curbside pickup as

follows. The probability that a consumer accepts a stockout substitute should be independent of whether

its observable characteristics resemble those of the out-of-stock product, conditional on her (time-invariant)

tendency to like or dislike the substitute. Concerning some product categories, such as flour, this is a

counterintuitive prediction. To see why, consider a consumer who regularly purchases two types of flour:

all-purpose flour, which she uses to bake cupcakes; and bread flour, which she uses to bake bread. Note that

her choice of flour on a given trip indicates its intended application: cupcakes, if she has opted for all-purpose

flour; or bread, if she has opted for bread flour. Thus, she will be likelier to accept a given all-purpose flour

product as a substitute on trips where she has ordered a (different) all-purpose flour than on trips where she

has ordered a bread flour. However, the mixed logit IPA excludes this intuition; our baker’s order choice

should be uninformative of her decision about the substitute.

To test this prediction, I first construct a proxy variable for consumers’ (time-invariant) tendencies to like

or dislike each version of a product characteristic.4 (For instance, as far as flour type is concerned, does the

consumer tend to like all-purpose flours? Bread flours? Whole wheat flours?) Then I test the mixed logit

IPA as follows. Is the probability of acceptance independent of whether the substitute shares the out-of-stock

4This proxy variable is based on consumers’ individual purchase histories. Specifically, I compute the fraction of the
consumer’s trips in which the purchased product features a specific version of a characteristic. For instance, in what fraction of
her trips does she purchase all-purpose flours? Or bread flours?
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product’s version of the characteristic, conditional on the proxy for the consumer’s (time-invariant) tendency

to like or dislike the substitute’s version? I find evidence in the affirmative for one product category (bottled

water) but not the other (flour). The difference between the categories seems to reflect a disparity in the

amount of within-consumer preference variation. Whereas the preferences of bottled water buyers tend to

persist across trips, those of flour buyers often vary based on the intended recipe (for which a specific type of

flour may be ideal).

Section 6 tests whether the mixed logit IPA materially affects demand estimates. I estimate demand for

bottled water and flour using mixed probit (a model without an IPA constraint) as well as mixed logit. To allow

mixed logit to compete with mixed probit on the best possible footing, I estimate the distributions of random

coefficients nonparametrically.5 This ensures that the random coefficients reflect consumers’ (time-invariant)

tendencies to like or dislike substitute products as accurately as possible, thereby minimizing the influence

of the mixed logit IPA.

With the estimates in hand, I compare the models’ goodness of fit within each product category. I separately

assess fit for (i) consumers’ intended purchases (which comprise orders for curbside pickup or home delivery

as well as in-store purchases); and (ii) consumers’ decisions to accept or reject stockout substitutes. Notice

that the mixed logit IPA applies only to the latter data type (which constitutes alternate-choice data).

I find the models’ fit to be comparable with respect to consumers’ intended purchases. By contrast, there

is a perceptible difference in fit where stockout substitutions are concerned: both within- and out-of-sample,

mixed probit fits the data better. Concerning bottled water (flour) substitutes, the average predicted probability

of consumers’ observed decisions to accept or reject is 0.9 (1.0) percentage points greater for mixed probit

than for mixed logit. Out-of-sample, these disparities in fit widen to 1.9 and 2.4 percentage points for bottled

water and flour, respectively. That the difference in model fit is somewhat larger for flour than for bottled

water is in keeping with the descriptive evidence summarized above: namely, that consumers’ purchases of

bottled water are consistent with the mixed logit IPA, whereas their purchases of flour are not.

The results of this paper can inform future applied work in which the researcher has access to alternate-

choice data. If within-consumer variation in preferences is a second-order concern, mixed logit should be

able to reproduce the substitution patterns in the alternate-choice data. But if within-consumer variation in

preferences is an important feature of the choice environment, then an alternative model like mixed probit

may be preferable.

5To the best of the author’s knowledge, this is the first study to estimate mixed probit nonparametrically in a multinomial
choice context.
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2. Relationship to Prior Literature

A growing empirical literature leverages alternate-choice data to estimate demand elasticities. The pioneering

work is Berry, Levinsohn, and Pakes’s (2004) study of the US automotive market—hereafter, BLP ’04. They

estimate a mixed logit model of demand using two types of data: aggregated data on products’ market

shares, and questionnaire data from a representative sample of new-car buyers. The latter indicate buyers’

“second choices”—that is, the purchases they would have made if their preferred vehicle were unavailable.

By requiring their demand system to match these second-choice substitution patterns, BLP ’04 obtains more

precise estimates of the parameters that govern product substitutability in their model.

The empirical framework developed in BLP ’04 remains the most popular means of incorporating alternate-

choice data in demand systems.6 Of the few studies that do adopt alternative frameworks, most still share the

following features with BLP ’04:

(i) The consumer’s discrete choice problem is modeled with mixed logit.

(ii) The data consist of cross-sectional data on consumers’ purchases, coupled with stated-preference data

on consumers’ rankings of unpurchased products.7

It is these features that mark my point of departure from the existing literature. Regarding (i), I highlight

the restrictions imposed by mixed logit on the substitution patterns in alternate choice data. Under the IPA

property of mixed logit, the consumer’s purchase choice must be independent of her pairwise preferences

among unpurchased goods, conditional on her (consumer-specific) taste coefficients. As for (ii), my data

differ in important respects from the data employed in earlier studies. Most prior work couples (a) nationally

representative, but aggregated, data on market shares with (b) highly detailed, but stated-preference, alternate-

choice data. In contrast, my data pair (a) household-level panel data on purchases at a single, regional retailer;

with (b) less comprehensive, but revealed-preference,8 alternate-choice data.

In what follows, I will elaborate on both these points of departure, explaining how they can inform future

applied work that uses alternate-choice data. Then I will briefly remark on two other literatures to which my

6In addition to a series of studies on the automotive market listed below, Farronato and Fradkin (2022) also adapt the framework
of BLP ’04 in their study about the welfare effects of Airbnb on the accommodation industry. Other recent examples include
Conlon and Gortmaker (2023), who study the soda industry; as well as Montag (2023), who studies the household appliance
industry.

7These data, which are collected from questionnaires, concern consumers’ hypothetical preferences over products they did not
purchase. For example, “If product A were not available, what would you have purchased instead?”

8These data record consumers’ decisions to purchase, or not purchase, store-selected substitute products. Consumers therefore
have “skin in the game:” if they accept the substitute, they will pay for it.
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work relates: the econometric literature on the identifying power of alternate-choice data, and the empirical

literature that leverages data on stockout events.

A. Estimating Demand with Alternate-Choice Data

The Model.—In differentiated products demand estimation, the consumer’s discrete choice problem is most

often represented with mixed logit.9 However, mixed logit is subject to an IPA property that may be unrealistic

in some settings. In the introduction, I used the example of a regular flour buyer to illustrate the kind of

behavior that is excluded by the mixed logit IPA. Here I translate this constraint to the automotive market,

the subject of the empirical application in BLP ’04 as well as several recent studies that integrate alternate

choice data in a mixed logit model—Grieco, Murry, and Yurukoglu (2023); Bachmann et al. (2023); and

Xing, Leard, and Li (2021). To see the significance of the mixed logit IPA in the automotive market, picture

someone who has purchased two cars recently. The first is a large SUV (say, the Chevrolet Suburban);

while the second is a small sports car (say, the Chevrolet Camaro). Suppose that she purchased the former

about a year before the latter. Under the mixed logit IPA, our consumer’s pairwise preferences among the

unpurchased automobiles should have been essentially identical when she purchased the SUV as when she

purchased the sports car a year later. In other words, she was equally likely to have preferred an unpurchased

SUV (say, the Ford Expedition) over an unpurchased sports car (say, the Ford Mustang) on both occasions.

But this prediction is counterintuitive, as the uses of an SUV (such as transporting bulky objects or ferrying

lots of people) differ from those of a sports car (such as pleasure driving). Thus, when our consumer made

her more recent purchase—that of the Camaro—she was probably searching specifically for a small sports

car. It seems unlikely that this search would have ended in the purchase of a second large SUV, as such a

vehicle would not fulfill the purpose she had in mind. But the mixed logit model might make just such a

prediction, because it presumes that her preferences over unpurchased vehicles remained identical between

the two shopping occasions (despite the different classes of vehicle purchased).

Even so, the mixed logit IPA remains realistic in many other settings. Take the case of household

appliances, for example. An individual consumer is unlikely to purchase a given appliance (such as a furnace

or dishwasher) more than a couple of times throughout her lifetime. And even if she does make multiple

purchases, her preferences will likely remain quite stable over time. Thus, within-consumer preference
9Allcott (2013) represents a notable exception. In his research into the accuracy of consumers’ beliefs on the savings from

fuel efficient vehicles, he employs a nested logit model. Another exception, albeit from outside the field of industrial organization,
is provided by Abdulkadiroğlu, Agarwal, and Pathak (2017). Their research into school choice employs the multinomial probit
model.
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variation is likely minimal in household appliance markets, even if there is considerable between-consumer

preference variation. In such markets, the mixed logit IPA accurately describes consumers’ behavior.

The Data.—The data employed in this study provide a useful complement to the data used in previous

work. Within the existing literature, it is customary to couple (i) cross-sectional data on market shares

with (ii) detailed, but stated-preference, alternate-choice data. This data combination is ideal for most

applications of interest, such as recovering markups or characterizing market responses to counterfactual

policy changes. However, it would be challenging to test the IPA property of mixed logit with cross-sectional

data of this description. The reason is that the mixed logit IPA imposes a within-panel restriction on product

substitutability. To assess the extent to which consumer behavior is consistent with this constraint, it helps to

have household-level panel data. My data—which consist of (i) household-level panel data on consumers’

purchases and (ii) revealed-preference alternate-choice data—fit this description.

My data display two key limitations. The first concerns external validity: whereas most existing studies

employ nationally representative data, mine cover only one (regional) retailer. As for the second limitation,

my data provide less detailed information on consumers’ preferences over unpurchased products than do

the data employed in existing studies. Specifically, my data characterize consumers’ revealed preferences

between one unpurchased good—namely, a store-selected stockout substitute—and the “outside option” of

purchasing nothing. By contrast, most existing studies leverage questionnaire data in which consumers either

(i) state their second–most-preferred product or (ii) provide a complete ranking of the unpurchased products.

Although these data describe hypothetical choices,10 they are far more detailed than my data, and will thus

provide more precise estimates of demand elasticities.

Unlike most previous studies, my objective is not to obtain a nationally-representative model of demand

for a specific market. Rather, my task is to evaluate the degree to which the IPA properties of conditional and

mixed logit coincide with consumers’ observed behavior for various product categories. So far as this task is

concerned, the limitations of my data are unlikely to prove a substantial hindrance.

B. The Econometric Literature on Identification with Alternate-Choice Data

An emerging econometric literature documents how alternate-choice data help to identify demand. Conlon

and Mortimer (2021) show that, under certain conditions, second-choice data identify the “Average Treatment

10See Carlsson and Martinsson (2001) for a discussion in the context of environmental economics; Lusk and Schroeder (2004)
for one in agricultural economics; Quaife et al. (2018) for one in health economics; and Brownstone and Small (2005) for one in
transportation research.

7



for the Untreated” (ATUT) which may, in turn, be a good proxy for demand elasticities. In addition,

preliminary work by Conlon, Mortimer, and Sarkis (2023) suggests that a pairing of (i) second-choice

data and (ii) information on market shares can identify demand even without data on products’ observable

characteristics. Furthermore, nonparametric estimation using such data can sometimes match observed

substitution patterns better than BLP ’04–style demand systems, despite the latter exploiting additional data

on product characteristics. In particular, BLP ’04–style demand systems sometimes underpredict diversion to

close substitutes and overpredict diversion to more distant ones. This tendency could be partially explained

by the IPA property of mixed logit, which rules out within-consumer variation in preferences over product

characteristics (such as might arise from variation in purchase circumstances).

C. The Literature on Stockouts and Demand Estimation

There is a large literature in empirical industrial organization and marketing that leverages stockout events

to help estimate demand. The intuition is that the substitutability of one good—say, A—for another—say,

B—can be inferred from the degree to which A’s choice share increases when B goes out of stock. In this

literature, the primary points of differentiation are (i) the institutional environment and (ii) the cause of product

unavailability. Regarding (i), some of these papers’ environments resemble mine, being either supermarkets

or convenience stores. These include Musalem et al. (2010) and Bruno and Vilcassim (2008). Another

important purchasing environment within this literature is vending machines, the subject of Anupindi, Dada,

and Gupta (1998); Conlon and Mortimer (2021); Conlon and Mortimer (2013); and Conlon and Mortimer

(2010). As for (ii), most studies rely on endogenous (i.e., naturally occurring) stockouts. Notable exceptions

include Conlon and Mortimer’s 2021 and 2010 studies, which experimentally manipulate product availability

in vending machines.

The key difference between these studies and mine is the data. In my data, stockouts occur after the

consumer has already made her initial purchase decision. Consequently, I observe two choices per stockout

event: the consumer’s “first choice” as well her later decision to accept or reject a store-selected substitute

(after her first choice has gone out of stock). By contrast, the studies listed above observe only one choice

per stockout event: the consumer’s purchase from among the available alternatives. It remains unknown

what the consumer would have purchased under full availability. Further, the aforementioned studies rely on

cross-sectional data, whereas I have panel data. For both these reasons, my data are especially suitable to test

the IPA properties of conditional and mixed logit.
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One study within this literature may provide suggestive evidence of bias resulting from the mixed logit IPA.

Conlon and Mortimer (2010) find that, when a product goes out of stock, the mixed logit model underpredicts

the sales increase enjoyed by close substitutes and overpredicts that enjoyed by more distant substitutes.

Notice that this is the same pattern identified by Conlon, Mortimer, and Sarkis (2023) in the context of the

automotive market (as discussed in Section 2B). Regarding vending machines, Conlon and Mortimer propose

several potential explanations for this pattern, such as omitted product characteristics or the absence of price

variation in vending machines. However, the IPA property of mixed logit could also be responsible. Under

this constraint, an individual consumer cannot be “in the mood” for a certain type of snack on one occasion

but a different type on another.11 So if an individual consumer opts for different categories of snacks on

different occasions—such as a savory snack on one occasion and a sweet one on another—then the mixed

logit model will assume she is (largely) indifferent between the two categories. But in actual fact, she might

have had a strong preference for one category on a given occasion (e.g., “I could really use a salty snack

right now”) but a strong preference for a different category on another occasion (e.g., “I’m craving something

sweet right now”).

3. Theory: Alternate-Choice Data in Demand Systems

In this section, I introduce my empirical framework and then formalize the IPA properties of conditional and

mixed logit.

Consider a differentiated products market with 𝐽 goods (or “products”), along with an outside option of no

purchase (“good 0”). At time 𝑡, each consumer 𝑖 purchases the good 𝑗 ∈ J ≡ {0, 1, . . . , 𝐽} that affords the

greatest conditional indirect utility 𝑢𝑖 𝑗𝑡 .12

Utility is a linear index of product characteristics (𝑥 𝑗), price (𝑝 𝑗𝑡 ), and an i.i.d. Gumbel error (𝜀𝑖 𝑗𝑡 ):

𝑢𝑖 𝑗𝑡 = 𝑥 𝑗𝛽𝑖 − 𝛼𝑖𝑝 𝑗𝑡 + 𝜀𝑖 𝑗𝑡 .

11To see how this would bias estimates of demand elasticities, picture a consumer who orders a savory snack—say, Lay’s potato
chips—on one occasion but a sweet one—say, Kit Kat—on another. Under the mixed logit IPA, her relative preferences among
the unpurchased snacks must have remained the same on both occasions. Consider the counterfactual where both her first-choice
products were out of stock on their respective purchase occasions—that is, Lay’s potato chips were out of stock on the first occasion
and Kit Kat out of stock on the second. Under the mixed logit IPA, she would have been no likelier to divert to a given savory
snack—say, salted peanuts—on the first occasion (when, under full availability, she would have ordered a salty snack) than on the
second (when, under full availability, she would have ordered a sweet snack).

12I assume that arg max 𝑗∈J 𝑢𝑖𝐴𝑡 is a singleton set with probability one. (In other words, there are no “ties.”).
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Note that the taste coefficients (𝛽𝑖, 𝛼𝑖) are specific to individual consumers 𝑖.

I will show that conditional and mixed logit each impose a form of independence between consumers’

purchases and their preferences among unpurchased goods. I begin by proving a lemma about (conditional)

logit utilities. Then I use this lemma to derive the IPA properties of conditional and mixed logit.

Lemma 1 (Irrelevance of Identical Upper Bounds on Two Goods’ Logit Utilities). Assume that all consumers

share the same taste coefficients, with (𝛽𝑖, 𝛼𝑖) = (𝛽, 𝛼) for all 𝑖. Then, for any two goods 𝐴, 𝐵 ∈ J and any

constant 𝐾 ∈ R,

Pr
[
𝑢𝑖𝐴𝑡 > 𝑢𝑖𝐵𝑡

�� max{𝑢𝑖𝐴𝑡 , 𝑢𝑖𝐵𝑡 } < 𝐾
]
= Pr[𝑢𝑖𝐴𝑡 > 𝑢𝑖𝐵𝑡 ] .

Proof. See Appendix A. ■

K
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Figure 1 – Irrelevance of Identical Upper Bounds on Two Goods’ Logit Utilities

Figure 1 depicts a generic example of Lemma 1. The black solid line and the gray dash-dotted line chart the

unconditional PDFs of 𝑢𝑖𝐴𝑡 and 𝑢𝑖𝐵𝑡 , respectively; while the conditional PDFs of 𝑢𝑖𝐴𝑡 and 𝑢𝑖𝐵𝑡 respectively

correspond to the black dashed and gray dotted lines.

Although both unconditional PDFs share the same shape, the unconditional PDF of 𝑢𝑖𝐴𝑡 is a rightwards

location-transformation of 𝑢𝑖𝐵𝑡 ’s. (Evidently, the representative utility of good 𝐴 exceeds that of good 𝐵:

𝑥𝐴𝛽 − 𝛼𝑝𝐴𝑡 > 𝑥𝐵𝛽 − 𝛼𝑝𝐵𝑡 .) It follows that

Pr[𝑢𝑖𝐴𝑡 > 𝑢𝑖𝐵𝑡 ] >
1
2
.
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Turning to the conditional PDFs, notice that both are bounded above by 𝐾 . However, they differ in shape,

with the conditional PDF of 𝑢𝑖𝐴𝑡 bunching more tightly around 𝐾 than does the conditional PDF of 𝑢𝑖𝐵𝑡 . It

follows that

Pr
[
𝑢𝑖𝐴𝑡 > 𝑢𝑖𝐵𝑡

�� max{𝑢𝑖𝐴𝑡 , 𝑢𝑖𝐵𝑡 } < 𝐾
]
>

1
2
.

Conditional on being smaller than 𝐾 , the random variable 𝑢𝑖𝐴𝑡 is more likely to be “just under” the upper

bound 𝐾 than is the random variable 𝑢𝑖𝐵𝑡 . Less intuitive, however, is the following result, which is implied

by Lemma 1:

Pr
[
𝑢𝑖𝐴𝑡 > 𝑢𝑖𝐵𝑡

�� max{𝑢𝑖𝐴𝑡 , 𝑢𝑖𝐵𝑡 } < 𝐾
]
= Pr[𝑢𝑖𝐴𝑡 > 𝑢𝑖𝐵𝑡 ] .

That is, the probability that 𝑢𝑖𝐴𝑡 is greater than 𝑢𝑖𝐵𝑡 remains unchanged after imposing the condition that

max{𝑢𝑖𝐴𝑡 , 𝑢𝑖𝐵𝑡 } < 𝐾 . In visual terms, the two distributions will both compress to the left such that the

probability of a draw from one distribution exceeding a draw from the other remains unchanged.

Not all distributions display this property. For instance, if the error terms were distributed i.i.d. standard

normal (as opposed to i.i.d. Gumbel), then

Pr
[
𝑢𝑖𝐴𝑡 > 𝑢𝑖𝐵𝑡

�� max{𝑢𝑖𝐴𝑡 , 𝑢𝑖𝐵𝑡 } < 𝐾
]
≠ Pr[𝑢𝑖𝐴𝑡 > 𝑢𝑖𝐵𝑡 ]

in general.13 So this property represents an unusual feature of the (conditional) logit model and, by extension,

of the Gumbel distribution.

I will now employ Lemma 1 to derive the IPA property of conditional logit.

Theorem 1 (Conditional Logit IPA). Assume that all consumers share the same taste coefficients, with

(𝛽𝑖, 𝛼𝑖) = (𝛽, 𝛼) for all 𝑖. Then, for any three goods 𝐴, 𝐵, 𝐶 ∈ J ,

Pr
[
𝑢𝑖𝐵𝑡 > 𝑢𝑖𝐶𝑡

�� 𝑢𝑖𝐴𝑡 = max 𝑗∈J 𝑢𝑖 𝑗𝑡
]
= Pr[𝑢𝑖𝐵𝑡 > 𝑢𝑖𝐶𝑡 ] .

Proof. By the law of iterated expectations,

Pr
[
𝑢𝑖𝐵𝑡 > 𝑢𝑖𝐶𝑡

�� 𝑢𝑖𝐴𝑡 = max 𝑗∈J 𝑢𝑖 𝑗𝑡
]
= E

[
Pr

[
𝑢𝑖𝐵𝑡 > 𝑢𝑖𝐶𝑡

�� 𝑢𝑖𝐴𝑡 = max 𝑗∈J 𝑢𝑖 𝑗𝑡 ;

(𝑢𝑖 𝑗𝑡 ) 𝑗∈J\{𝐵,𝐶 }
] ��� 𝑢𝑖𝐴𝑡 = max 𝑗∈J 𝑢𝑖 𝑗𝑡

]
.

(1)

13By way of example, suppose 𝑢𝑖𝐴𝑡 = 1 + 𝜀𝑖𝐴 and 𝑢𝑖𝐵𝑡 = 𝜀𝑖𝐵, where the error terms are i.i.d. standard normal. Then
Pr

[
𝑢𝑖𝐴𝑡 > 𝑢𝑖𝐵𝑡

�� max{𝑢𝑖𝐴𝑡 , 𝑢𝑖𝐵𝑡 } < 𝐾
]
≈ 0.66 < 0.76 ≈ Pr[𝑢𝑖𝐴𝑡 > 𝑢𝑖𝐵𝑡 ].
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As far as the inner component of (1) is concerned, only two goods’ utilities are random variables: those

of 𝐵 and 𝐶. (The remaining goods’ utilities are constants.) We can therefore apply Lemma 1 to the inner

component of (1), obtaining

Pr
[
𝑢𝑖𝐵𝑡 > 𝑢𝑖𝐶𝑡

�� 𝑢𝑖𝐴𝑡 = max 𝑗∈J 𝑢𝑖 𝑗𝑡 ; (𝑢𝑖 𝑗𝑡 ) 𝑗∈J\{𝐵,𝐶 }
]
= Pr[𝑢𝑖𝐵𝑡 > 𝑢𝑖𝐶𝑡 ] . (2)

Substituting (2) into (1) yields

Pr
[
𝑢𝑖𝐵𝑡 > 𝑢𝑖𝐶𝑡

�� 𝑢𝑖𝐴𝑡 = max 𝑗∈J 𝑢𝑖 𝑗𝑡
]
= E

[
Pr[𝑢𝑖𝐵𝑡 > 𝑢𝑖𝐶𝑡 ]

�� 𝑢𝑖𝐴𝑡 = max 𝑗∈J 𝑢𝑖 𝑗𝑡
]

= Pr[𝑢𝑖𝐵𝑡 > 𝑢𝑖𝐶𝑡 ] .

■

Importantly, goods 𝐴, 𝐵, and 𝐶 need not be “inside goods.” Rather, one of them could be the outside

option: good 0. Such is the case for the empirical application to curbside pickup in Sections 5 and 6.14

I will now show that mixed logit exhibits an analogous IPA property, conditional on the realizations of

consumers’ random taste coefficients.

Corollary 1 (Mixed Logit IPA). For any three goods 𝐴, 𝐵, 𝐶 ∈ J ,

Pr
[
𝑢𝑖𝐵𝑡 > 𝑢𝑖𝐶𝑡

�� 𝑢𝑖𝐴𝑡 = max 𝑗∈J 𝑢𝑖 𝑗𝑡 ; 𝛽𝑖, 𝛼𝑖
]
= Pr[𝑢𝑖𝐵𝑡 > 𝑢𝑖𝐶𝑡 | 𝛽𝑖, 𝛼𝑖] .

Proof. Follows immediately from Theorem 1 and the definition of mixed logit. ■

I discuss the practical implications of Theorem 1 and Corollary 1 elsewhere.15 In addition, Appendix B

relates Theorem 1 to prior theoretical results in the literature, while Appendix C presents Monte Carlo tests

of Theorem 1.

14Briefly: in curbside pickup, a consumer is observed making two related choices: her initial order, and her subsequent decision
to accept or reject a stockout substitute. Regarding the former, her decision to order some good 𝑗 for curbside pickup indicates
that she prefers 𝑗 to the outside option (good 0). As to the latter, she will accept an inside good 𝑗 ′ ∈ J \ {0, 𝑗} if and only if 𝑗 ′ is
preferred to the outside option. See Sections 5 and 6 for details.

15See Section 5 for an application of Theorem 1 to curbside grocery pickup; and for applications of Corollary 1 to the automotive
market and to curbside grocery pickup, see Sections 2 and 5, respectively.
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4. Institutional Background and Data

This section introduces the data, which concern curbside grocery pickup at a regional supermarket chain. In

what follows, I first provide an overview of curbside grocery pickup and then catalog the contents of the data.

A. Institutional Background

Curbside grocery pickup is a form of online shopping in which a consumer orders her groceries online and

later picks them up from a bricks-and-mortar supermarket. Her shopping experience proceeds according to

the following timeline. First, she uses the supermarket’s website or its smartphone app to place her order,

indicating which items she wants as well as when she would like to pick them up (e.g., tomorrow morning).

Some time later, a supermarket worker gathers the requested items and sets them aside to await pickup. Once

the consumer arrives, the worker will bring the items out to her car, where she will pay for them.

Sometimes, however, an item in the consumer’s order goes out of stock after she has placed the order, but

before the supermarket worker assembles it. In that event, the worker will choose another product to serve

as a substitute. Once the consumer arrives, she will be presented with two choices: either she can accept the

substitute that the worker chose earlier on her behalf, or she can reject it and buy no such product at all.

B. Data

This study employs three data sets from a regional supermarket chain. The first, hereafter referred to as the

“curbside stockout” data set, concerns stockout substitutions in curbside pickup orders. For each stockout

event, these data report the universal product code (UPC) of the out-of-stock item as well as that of the

substitute offered. I also observe the price of the substitute, as well as whether the substitute is accepted or

rejected by the consumer.16 The data also assign a unique identifier to each transaction, enabling me to match

them to the second data set.

The second data set comprises “scanner data,” which characterize all purchases at the supermarket chain,

irrespective of shopping channel (i.e., in-store, delivery, or curbside pickup). For each purchased item, these

data report the UPC and price. I also observe transaction IDs that follow the same system as the curbside

stockout data, enabling me to match the two data sets. In addition, the scanner data record the loyalty program

ID of the consumer making the purchase, lending the data a panel structure.17

16The price of the out-of-stock item is obtained from the second data set. See Section 6 for details.
17Although participation in the loyalty program is not compulsory in general, it is required in order to place curbside pickup
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The final data set is the chain’s “product catalog,” which characterizes all the products sold at the chain.

For each product, the catalog reports the UPC and brand, along with the location in the chain’s product

taxonomy. The catalog also provides a string description of the product, from which I extract information

on its observable characteristics (using so-called “regular expressions”). For example, here is the string

description for one of the flour products:

“GOLD MEDAL FLOUR HARVEST KING BREAD 5 LB”

This description classifies the product as a bread flour (as opposed to, say, all-purpose or wheat). It also

indicates the quantity of flour: five pounds.

Table 1 reports summary statistics for the two product categories studied in Sections 5 and 6: bottled water

and flour. These categories were chosen for three reasons. First, I observe many stockout substitutions for

products in these categories. Second, product differentiation within each category is fairly uncomplicated.

That is to say, a given product’s utility depends on only a few observable characteristics (a fact which

simplifies the structural analysis in Section 6). And third, the categories display dramatically different levels

of variation in consumers’ preferences over time. Recall that the mixed logit IPA constrains within-consumer

preference variation as follows: each consumer’s preferences among unpurchased products should remain

constant across all her trips. Thus, if consumers’ preferences remain stable over time in a given product

category, the IPA property of mixed logit will mirror consumers’ true preferences over unpurchased products.

On the other hand, if consumers’ preferences vary between shopping trips, the mixed logit IPA will be

inconsistent with their true preferences over unpurchased products.

To test whether the mixed logit IPA is inconsistent with the behavior of consumers whose preferences

differ between trips, I consider a product category with considerable within-consumer preference variation:

flour. The reason that flour buyers’ preferences vary between trips is that specific flours are suited to specific

recipes. If someone plans to bake bread, she would probably prefer bread flour; whereas if she intends to

bake cupcakes, she would probably favor all-purpose flour.18 By way of comparison, I also study a product

category whose buyers likely exhibit stable preferences over time: bottled water. Consumers’ preferences

concerning this category probably persist over time because bottled waters are functionally interchangeable.19

In consequence, a consumer’s order choice will largely depend on (i) her subjective assessments of products’

orders. Consequently, I can match the purchases of curbside pickup patrons to their in-store and delivery purchases.
18Although any flour can be used in any recipe, using the “wrong” type of flour may require extra work on the baker’s part—such

as adjusting the recipe—and may also result in an inferior final product.
19All bottled waters must satisfy FDA “standard of quality” conditions (U.S. Food & Drug Administration 2022), which

regulate the maximum level of contaminants in the product. In addition, most bottled waters share the same size: 16.9 fl oz.
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tastes and (b) her price sensitivity. And one would expect both (i) and (ii) to remain fairly constant between

trips.

Table 1 – Summary Statistics by Product Category

Panel A. Overview

Statistic
Bottled
water Flour

No. of households with 1+ substitutions 66,447 22,549
No. of distinct products purchased 39 52

. . . of which ordered for curbside pickup 30 38
No. of distinct brands purchased 9 14

. . . of which ordered for curbside pickup 9 8

Panel B. Per household
with 1+ substitutions

No. of shopping trips 37.8 11.6
. . . of which curbside pickup 6.9 2.9

. . . of which feature 1+ substitutions 1.6 1.1
No. of distinct products ever purchased 5.6 4.0

. . . of which ordered for curbside pickup 2.4 1.9
No. of distinct brands ever purchased 3.1 2.3

. . . of which ordered for curbside pickup 1.7 1.4

Panel C. Stockout substitutions
Prob. of acceptance 0.873 0.920

Notes: All estimates are reported as means or totals. By “brands,” I refer to food companies,
each of which may sell multiple products in a given category. For instance, the Gold Medal
brand sells many types of flour, such as “Whole Wheat” and “All-Purpose Bleached.”

Having explained why bottled water and flour form the focus of my empirical analysis, I now return to the

summary statistics in Table 1. Panel A presents an overview of these product categories. Notice that almost

three times as many households have experienced a stockout substitution for bottled water (66,450) as have

experienced one for flour (22,549). The categories also differ, albeit less dramatically, with respect to the

number of distinct brands and products carried by the chain. (By “brand,” I refer to the name of the food

company under which multiple different products may be sold. For instance, the Gold Medal brand sells

many different flour products, such as “Whole Wheat” and “All-Purpose Bleached.”) Specifically, there are

more distinct brands of flour—as well as individual products—than there are of bottled water. In addition,

observe that only a proper subset of the chain’s offerings in either category are available for curbside pickup.

Turning to the panel dimension of the data, Panel B reports that the average household (who has experienced

one or more substitutions) has made more shopping trips that involve bottled water (37.94) than flour (11.78).

A modest fraction of these trips are curbside pickup (18% and 25% for bottled water and flour, respectively).
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On average, bottled water buyers have experienced slightly more stockout substitutions (1.6) than have their

flour counterparts (1.14). Perhaps in consequence of having made more purchases, the average bottled water

buyer has purchased more distinct brands and products than has her flour counterpart.

Concerning stockout substitutions, Panel C indicates that flour buyers are likelier to accept the substitute

on offer (92.0%) than are their bottled water counterparts (87.2%).

5. Descriptive Evidence

In this section, I provide descriptive evidence concerning the extent to which consumer behavior coincides

with the IPA properties of conditional and mixed logit. Because the IPA property of conditional logit is a

cross-sectional independence constraint, whereas that of mixed logit is a within-panel constraint, I examine

the two properties separately.

A. The Conditional Logit IPA

The IPA property of conditional logit imposes independence between a consumer’s purchase and her pref-

erences among the unpurchased products. In the context of curbside pickup, the consumer’s “purchase”

corresponds to her order choice. Thus, the conditional logit IPA imposes independence between her original

order and her preferences among the goods she did not order—including the “outside option” of buying

nothing.

To see why, consider a consumer 𝑖 who is placing an order for curbside grocery pickup at time 𝑡. She must

choose among 𝐽𝑡 differentiated goods and the “outside option” of no purchase (“good 0”). She will order

whichever good 𝑗 ∈ J𝑡 = {0, 1, . . . , 𝐽𝑡 } affords the greatest conditional indirect utility 𝑢𝑖 𝑗𝑡 ,20 given by

𝑢𝑖 𝑗𝑡 = 𝑥 𝑗𝛽 − 𝛼𝑝 𝑗𝑡 + 𝜀𝑖 𝑗𝑡 .

In this equation, 𝑥 𝑗 is a vector of product characteristics, 𝑝 𝑗𝑡 denotes the price, and 𝜀𝑖 𝑗𝑡 is an i.i.d. Gumbel

20I model “conditional” demand—that is, demand conditional on ordering one of the inside goods. There are two reason for
adopting this approach. First, on occasions when someone visits the store but does not purchase a product within a given product
category, it is unclear whether (i) she actively considered the store’s offerings within the category, but decided the “outside option”
of no purchase was preferable; or (ii) she never examined the store’s offerings at all, as she had no need for a product in the
category. As for the second reason that I model conditional demand, it is that the value of the “outside option” may differ within a
given curbside pickup trip. When the consumer is assembling her order at home, she may be more (or less) disposed to prefer the
outside option than when she has been offered a stockout substitute at the store. (For instance, after she has placed her order, she
may be committed to preparing a specific recipe based on the combination of items in her pickup order.)

16



error. Regarding the outside option, I normalize 𝑢𝑖0𝑡 = 𝜀𝑖0𝑡 .

Suppose that consumer 𝑖 orders an inside good 𝑗 ∈ J𝑡 \ {0}. This suggests that she prefers 𝑗 over the other

inside goods as well as the outside option: 𝑢𝑖 𝑗𝑡 = max 𝑗′∈J𝑇 𝑢𝑖 𝑗′𝑡 .

Now imagine that our consumer’s ordered good 𝑗 goes out stock. As a result, she faces a binary choice

between (i) a stockout substitute 𝑠 ∈ J \ {0, 𝑗} and (ii) the outside option. She will accept the substitute 𝑠

if and only if 𝑢𝑖𝑠𝑡 ⩾ 𝑢𝑖0𝑡 .21 Given her original order choice ( 𝑗), what is the probability that she accepts 𝑠?

Under Theorem 1,

Pr[𝑖 accepts 𝑠 | 𝑖 ordered 𝑗] = Pr[𝑢𝑖𝑠𝑡 ⩾ 𝑢𝑖0𝑡 | 𝑢𝑖 𝑗𝑡 = max 𝑗′∈J 𝑢𝑖 𝑗′𝑡 ]

= Pr[𝑢𝑖𝑠𝑡 ⩾ 𝑢𝑖0𝑡 ]

= Pr[𝑖 accepts 𝑠]

In other words, the probability of acceptance should be independent of our consumer’s original order choice.

This independence constraint can be directly tested in the data by tallying the acceptance probabilities for

each ordered/substitute product pairing and then applying a likelihood-ratio test of conditional independence.

The null hypothesis is that a given good’s probability of being accepted is independent of the consumer’s

original order.

In taking this test to the data, I entertain two specifications. The first includes all ordered/substitute product

pairings observed in the data. However, this specification suffers from (potential) amelioration bias, as most

substitute products are only offered as substitutes for a small subset of out-of-stock products. Although

I employ the “rule of three” correction,22 the results should still be interpreted with caution. I therefore

prefer a second specification, which focuses on a smaller analysis sample with only the top ten products in

each product category (in terms of curbside sales among households who experience one or more stockout

substitutions).

Under the first specification (which includes all product pairings), the null hypothesis of independence is

rejected for bottled water (𝑝 < 10−300),23 but not for flour (𝑝 ≈ 1).24 However, in both these categories,

more than three-quarters of the cells in the three-way contingency table are empty. Turning to the second

21Without loss of generality, I normalize the utility of the outside option so that 𝑢𝑖0𝑡 = 𝜀𝑖0𝑡 .
22See Jovanovic and Levy (1997) or Tuyl, Gerlach, and Mengersen (2009).
23The log likelihood ratio test statistic is 4521, with 2186 degrees of freedom. The latter is computed as

((no. of unique out-of-stock products) − 1) (no. of unique substitute products)
24The 𝑝-value is numerically indistinguishable from one, given a log likelihood ratio test statistic of 1615 with 2435 degrees

of freedom.
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specification, which attends only to pairings of the top ten products in each category, the null hypothesis of

conditional independence is rejected with 𝑝 < 10−300 in both categories.25

Although the foregoing exercise maps straightforwardly to the conditional logit IPA (as expressed in

Section 3), it suffers from two drawbacks. First, there are many products within each category. This makes

it difficult to discern why the conditional logit IPA is, or is not, satisfied within a category. And second,

the exercise is removed from empirical practice. It is not common practice to estimate consumers’ tastes

for individual goods (i.e., with product dummies). Rather, it is customary to parameterize utility as a linear

index of product characteristics such as brand or size. I therefore emphasize a different descriptive exercise

which focuses on product characteristics, as opposed to specific substitute/out-of-stock product pairings.

This exercise centers on the following corollary to the conditional logit IPA (Theorem 1).

The conditional logit IPA imposes independence between the following:

(1) The identity of the out-of-stock product

(2) The decision to accept or reject a given substitute

Provided that utility is a linear index of product characteristics, the succeeding pair of factors should also be

mutually independent:26

(1A) The characteristics of the out-of-stock product

(2A) The decision to accept or reject a substitute with given characteristics

In other words, a substitute is no likelier to be accepted if its characteristics closely resemble those of the

out-of-stock product than if they are highly dissimilar. Rather, what matters is the “popularity” of the

substitute’s characteristics. Are the substitute’s characteristics—brand, size, flavor, etc.—ones that feature

in a large share of orders? If so, the substitute affords high representative utility and,27 in consequence,

will enjoy a comparatively high acceptance probability. On the other hand, if the substitute’s characteristics

appear in only a small fraction of orders, then its representative utility must be relatively small, in which case

it will suffer a comparatively low acceptance probability. At all events, the extent to which the product is

substitutable for the out-of-stock product—as indicated by its (dis)similarity in observable characteristics—is

irrelevant.
25The likelihood ratio test statistics are 3099 and 515 for the product categories of bottled water and flour, respectively. There

are 80 degrees of freedom in each case.
26This follows from the definition of conditional independence; factors (1A) and (2A) are more aggregate partitions of the

product space than are factors (1) and (2), respectively.
27By “representative utility,” I mean the modeled portion of utility (as opposed to the error term).
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Table 2 presents the results of this test for the product categories of bottled water and flour. For each

category, the leftmost column lists the characteristics that differentiate products within the category. (For

instance, bottled water is differentiated with respect to four characteristics: brand, the number of bottles

in the case, the size of each bottle, and the type of water.) Then the second and third columns catalog

possible pairings of the out-of-stock product and substitute’s versions of a given characteristic. Where

polytomous characteristics are concerned (such as brand or bottle count),28 there are too many versions

of the characteristic to enumerate all possible pairings. I therefore report results solely for the top two

versions of each characteristic.29 (For example, the top two brands of bottled water are Ice Mountain and

the store’s private label.) Finally, for each pairing of the substitute and out-of-stock products’ versions of

the characteristic, the remaining columns report the probability of acceptance as well as the number of

observations.

According to the conditional logit IPA, the probability of acceptance should depend only on the “popularity”

of the substitute’s characteristics;30 whether they match the out-of-stock product’s characteristics should be

immaterial. However, Table 2 does not support this prediction. To see why, consider a specific characteristic

within a product category (such as brand). Notice that the four rows corresponding to the characteristic are

ordered on (i) the substitute’s version of the characteristic and then (ii) the out-of-stock product’s version.

For under the conditional logit IPA, the probability of acceptance should only depend on the substitute’s

version of the indicated characteristic, not on the out-of-stock product’s version. Hence, among the four rows

for a given characteristic, the probability of acceptance should be the same for the first and second rows,

as well as for the third and fourth rows. For example, the first and second (third and fourth) rows of panel

A both concern stockouts in which the substitute is sold under the private label (Ice Mountain brand). Per

the conditional logit IPA, the first and second (third and fourth) rows should thus report identical acceptance

probabilities.

In point of fact, the probability of acceptance tends to be greater when the out-of-stock product and the

substitute share the same version of the characteristic than when they feature different versions. This is

intuitive; one would expect consumers to prefer substitutes that resemble their first-choice products.

There are several apparent departures from this pattern. For example, a comparison of the third and fourth

rows in Panel A suggests that an Ice Mountain-branded substitute is likelier to be accepted if the consumer

28That is, characteristics with more than two distinct realizations.
29Within the analysis sample, comprising purchases by households with 1+ attempted substitutions.
30Formally, on the representative utility afforded by the substitute’s characteristics.
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Table 2 – Testing the Conditional Logit IPA

Panel A. Bottled water

Characteristic
Out-of-stock

product’s version
Substitute’s

version
Prob.
accept

No. of
obs.

Brand Private label Private label 0.918 30,918
Ice Mountain Private label 0.835 8283
Ice Mountain Ice Mountain 0.890 8903
Private label Ice Mountain 0.931 11,628

No. of bottles 24 24 0.861 69,823
40 24 0.930 17,311
40 40 0
24 40 0.918 4712

Size of individual bottles 16.9 fl oz 16.9 fl oz 0.878 84,439
8 fl oz 16.9 fl oz 0.789 1495
8 fl oz 8 fl oz 0.850 787

16.9 fl oz 8 fl oz 0.718 840
Water type Spring Spring 0.905 33,260

Purified Spring 0.845 16,346
Purified Purified 0.894 37,955
Spring Purified 0.801 19,619

Panel B. Flour
Brand Private label Private label 0.948 4614

King Arthur Private label 0.892 1719
King Arthur King Arthur 0.863 3954
Private label King Arthur 0.938 838

Quantity 5 lb 5 lb 0.908 17,887
2 lb 5 lb 0.955 1587
2 lb 2 lb 0.938 1013
5 lb 2 lb 0.936 2008

Type of flour All-purpose flour All-purpose flour 0.942 19,966
Bread flour All-purpose flour 0.825 1778
Bread flour Bread flour 0.911 1983

All-purpose flour Bread flour 0.840 344
Whether bleached or not Bleached Bleached 0.961 9639

Unbleached Bleached 0.899 4398
Unbleached Unbleached 0.898 8021
Bleached Unbleached 0.929 2686

Notes: This table presents the probability of a stockout substitute being accepted, conditional
on its own version of a specific characteristic as well as that of the out-of-stock product. If
the characteristic in question takes more than two values (as is the case for “brand” in all three
product categories), only the top two versions of the characteristic are considered (based on
purchases by households with one or more curbside stockouts).
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had originally ordered a private-label product than if she had ordered an Ice Mountain product. Results

of this kind appear to arise for two reasons. First, where some characteristics are concerned, consumers

who have ordered one version of the characteristic are likelier to accept than consumers who have ordered

the other—irrespective of the substitute’s version. Such is the case for bottled water brands. Whether the

substitute is sold under the private label or under the Ice Mountain brand, it is likelier to be accepted if the

consumer had originally ordered the private label than if she had originally ordered Ice Mountain. As to the

second source of these discrepancies, it concerns the finitude of the product space within a particular product

category. Because the store cannot find a substitute that exactly matches the substitute on all characteristics, it

will settle for one that matches it in some characteristics but not others. As a result, dissimilarity between the

substitute and the out-of-stock product with respect to one characteristic is often associated with similarity

with another (see Appendix Table 1 in Appendix D for a correlation matrix). And if the first characteristic

is less important to the consumer than the second, the result will be an inverse correlation between the

probability of acceptance and the substitute’s sharing the first characteristic with the out-of-stock product.

To illustrate, consider a stockout event involving flour. For most consumers, the characteristic of flour

type matters more than the characteristic of quantity does. So, given the choice, a consumer would probably

prefer a substitute that matches the out-of-stock product’s flour type (but not its quantity) over an alternate

substitute that matches the out-of-stock product’s quantity (but not its flour type). In addition, there is an

inverse correlation between (i) being offered a substitute that matches the out-of-stock product’s flour type

and (ii) being offered a substitute that matches the out-of-stock product’s quantity (as reported in Appendix

Table 1). The result is an inverse correlation between acceptance and the substitute’s sharing the out-of-stock

product’s quantity.

That the (dis)similarity of the offered substitute’s characteristics to those of the out-of-stock product

is predictive of acceptance—even conditional on the substitute’s characteristics—is inconsistent with the

conditional logit IPA. This finding is hardly unexpected. In most differentiated products markets, consumers

exhibit heterogeneous preferences over observable characteristics. And, in the context of curbside pickup,

an individual consumer’s order choice should provide some indication of her tastes (which may differ from

the population “average”). The result is a positive correlation between (i) the similarity of the substitute and

out-of-stock product and (ii) the probability of acceptance (with a few exceptions due to the finitude of the

product space, as described above).
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B. The Mixed Logit IPA

Having tested the IPA property of conditional logit, I now turn to its mixed logit counterpart. To see how

Corollary 1 relates to curbside pickup, consider the same consumer 𝑖 as in the preceding subsection. (Recall

that she ordered good 𝑗 at time 𝑡 and, after 𝑗 went out of stock, was offered good 𝑠 as a stockout substitute.)

Unlike conditional logit, mixed logit allows our consumer’s random taste coefficients (𝛽𝑖, 𝛼𝑖) to differ from

those of other consumers. How does this affect the probability of acceptance? Per Corollary 1,

Pr[𝑖 accepts 𝑠 | 𝑖 ordered 𝑗 ; 𝛽𝑖, 𝛼𝑖] = Pr[𝑢𝑖𝑠𝑡 ⩾ 𝑢𝑖0𝑡 | 𝑢𝑖 𝑗𝑡 = max 𝑗′∈J 𝑢𝑖 𝑗′𝑡 ; 𝛽𝑖, 𝛼𝑖]

= Pr[𝑢𝑖𝑠𝑡 ⩾ 𝑢𝑖0𝑡 | 𝛽𝑖, 𝛼𝑖]

= Pr[𝑖 accepts 𝑠 | 𝛽𝑖, 𝛼𝑖]

In other words, our consumer’s order choice should be uninformative of her decision to accept or reject the

substitute, conditional on her time-invariant tendency to like or dislike its observable characteristics.31

Table 3 – Stylized Example of the Mixed Logit IPA

Consumer P Consumer M
Trip Order Substitute Prob. accept Order Substitute Prob. accept

1 PL IM
2 PL IM
3 PL PL’ 𝑝𝑖 PL PL’ 𝑝𝑖𝑖𝑖
4 IM PL’ 𝑝𝑖𝑖 IM PL’ 𝑝𝑖𝑣

Note: Products PL and PL’ are sold under the private label, while good IM is sold under the Ice
Mountain brand.

To see the significance of this constraint, consider two consumers who regularly order bottled water for

curbside pickup. One of them, consumer P, usually purchases the private label;32 whereas the other, consumer

M, typically opts for Ice Mountain. Table 3 summarizes their orders and stockout substitutions. On trips 1

and 2, each consumer orders her customary brand, with consumer P choosing product PL (one of the private

label’s offerings) and consumer M opting for product IM (one of Ice Mountain’s). On trips 3 and 4, by

contrast, their orders coincide exactly, with both choosing product PL on trip 3 and product IM on trip 4.

However, on trips 3 and 4, both consumers’ orders go out of stock, and they are each offered product PL’ as

31In my differentiated products demand framework, as well as that in Berry, Levinsohn, and Pakes (2004), there is only one
source of within-consumer variation in a particular good’s representative utility: price changes (for which I include controls in the
descriptive exercises below). Although some studies, such as Grieco, Murry, and Yurukoglu (2023), accommodate secular shifts
in goods’ representative utility over time, they do so at the market level (as opposed to the household level).

32That is, the store’s eponymous brand of groceries.
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a substitute. Assume that PL’ shares the same brand as PL—namely, the private label—and is generally a

closer substitute for PL than for IM.

How does the probability of acceptance vary across these four (attempted) substitutions? Intuitively, there

are two key determinants of acceptance or rejection here: (i) the consumer’s time-invariant tendency to like

or dislike the characteristics of the substitute, and (ii) trip-specific considerations. To see how these factors

figure in our stylized example, let 𝑝𝑖 and 𝑝𝑖𝑖 denote the probability that consumer P accepts PL’ on her third

and fourth trips, respectively. Likewise, let 𝑝𝑖𝑖𝑖 and 𝑝𝑖𝑣 denote the probability that consumer M accepts PL’

on her third and fourth trips, respectively.

Focus first on the consumers’ time-invariant tendencies to (dis)like the characteristics of the substitute,

PL’. Recall that consumer P tends to favor the private label over Ice Mountain, whereas consumer M exhibits

the reverse tendency. Thus, the substitute PL’ shares the same brand as consumer P’s go-to product, but

does not share the brand of consumer M’s. As a result, when the two consumers have ordered the same

product, consumer P should be likelier to accept PL’ as a substitute than is consumer M. In other words,

𝑝𝑖 should exceed 𝑝𝑖𝑖𝑖 and 𝑝𝑖𝑖 should exceed 𝑝𝑖𝑣. This intuition is supported by the mixed logit IPA, which

allows a given substitute’s acceptance probability to vary based on individual consumers’ (heterogeneous)

time-invariant tendencies to like or dislike the substitute’s observable characteristics (here, its brand).

Turning to trip-specific considerations, note that consumers sometimes deviate from their usual order

behavior due to unusual circumstances. Take the case of consumer P’s order on trip 4, for example. Although

consumer P usually prefers the private label, here she departs from this pattern and orders the Ice Mountain

brand instead. This departure suggests the presence of trip-specific circumstances that make Ice Mountain

more attractive than usual, relative to the private label. Perhaps she is hosting guests who are partial to Ice

Mountain, whereas on previous trips she was shopping just for herself (and could therefore purchase the

private label, which she prefers). At all events, her decision to pass over the private label in favor of Ice

Mountain suggests that she may be less amenable to a private-label substitute than usual. One would therefore

expect 𝑝𝑖𝑖 to be smaller than 𝑝𝑖. By similar logic, consumer M’s uncharacteristic decision to order the private

label in trip 3, as opposed to her go-to brand (Ice Mountain), suggests that she may be more amenable to

a private-label substitute than usual. Consequently, one would expect 𝑝𝑖𝑖𝑖 to exceed 𝑝𝑖𝑣. However, neither

of these intuitions are consistent with the mixed logit IPA, under which consumers’ order choices should be

independent of the probability of accepting a given substitute. Here, this means that 𝑝𝑖 = 𝑝𝑖𝑖 and 𝑝𝑖𝑖𝑖 = 𝑝𝑖𝑣.

Are the foregoing predictions of the mixed logit IPA consistent with the data? To provide insight, I
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estimate a probit model in which the probability of acceptance depends on (i) the extent to which the

substitute’s characteristics resemble those of the out-of-stock product, and (ii) the consumer’s time-invariant

tendency to like or dislike the characteristics of the substitute. Regarding (i), I include a set of indicators

variables for the substitute’s sharing a given characteristic 𝑘 (such as brand) with the out-of-stock product.

Let same𝑖𝑘 = 1 if consumer 𝑖 is offered a substitute that shares characteristic 𝑘 with the out-of-stock product,

and same𝑖𝑘 = 0 otherwise. As for (ii), I proxy for the consumer’s time-invariant tendency to like (or dislike)

the substitute’s characteristics as follows. Leveraging the panel structure of the data, I compute the fraction

of the consumer’s shopping trips—past, present, and future—in which the purchased product shares the

substitute’s version of characteristic 𝑘 .33 I denote the resulting fraction by frac𝑖𝑘 . The intuition is that, if

the consumer likes the substitute’s version of a given characteristic, a large fraction of her purchases will

feature it; whereas if she dislikes it, only a small fraction will. To illustrate, I return to the stylized example

about bottled water buyers in Table 3. Minding that this example centers on the product characteristic of

brand, consider trip 3. Both consumers’ preferred products go out of stock on this trip, and both of them

are offered PL’ as a substitute. Concentrate first on consumer P. Of the four trips observed in the data, she

chooses product PL on three and product IM on one. Only the former product is sold under the same brand

as the substitute PL’—namely, the private label—so the proxy variable frac𝑃,brand equals three-fourths. Now

turn to consumer M, who opts for product IM on three of her four trips and product PL on the remaining

one. As the latter (but not the former) shares the brand of the substitute PL’, the variable frac𝑀,brand equals

one-quarter.

Observable characteristics aside, the price of the substitute may also be informative of the decision to

accept or reject. In particular, acceptance may be less likely if the substitute is perceptibly pricier than the

out-of-stock product. For this reason, I permit the probability of acceptance to depend on the difference

between the substitute’s price (𝑝𝑖,sub) and that of the out-of-stock product (𝑝𝑖,OOS).34

All told, I take the following probit model to the data. Letting 𝑎𝑖 = 1 if consumer 𝑖 accepts and 𝑎𝑖 = 0

33Where curbside pickup is concerned, I define the consumer’s “purchase” as the product that she originally ordered—even
if it goes out of stock and she purchases a substitute. (In that event, her original order choice will be more informative of her
preferences than the substitute, which is chosen by the store.)

34As discussed in Section 4, I do not observe the out-of-stock product’s price. Instead, I search the data for the nearest date on
which the out-of-stock product was purchased at the store in question. Then I impute the out-of-stock product’s price as being the
average purchase price on the date in question. For details on how I impute prices, see Section 6.
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otherwise, I estimate:

𝑎𝑖 =


1 if 𝑎★

𝑖
⩾ 0

0 if 𝑎★
𝑖
< 0,

where

𝑎★𝑖 =

𝐾∑︁
𝑘=1

(𝛾𝑘same𝑖𝑘 + 𝜁𝑘frac𝑖𝑘) + 𝜂 · (𝑝𝑖,sub − 𝑝𝑖,OOS) + 𝜐𝑖,

and 𝜐𝑖 is distributed i.i.d. standard normal.

Under the mixed logit IPA, whether the substitute matches the out-of-stock product’s version of a charac-

teristic 𝑘 (as captured by the same𝑖𝑘 variable) should be uninformative of acceptance, conditional on how

often the consumer purchases products with the substitute’s version of the characteristic (as given by the

frac𝑖𝑘 variable). So, if consumers’ behavior is consistent with the mixed logit IPA, the 𝜁𝑘’s should be positive

whereas the 𝛾𝑘’s should be indistinguishable from zero.

To illustrate how the mixed logit IPA would manifest in the data, I revisit the stylized example about

water bottle buyers in Table 3. Recall that the consumers were offered good PL’ as a substitute on two

occasions: trip 3, when both consumers had originally ordered good PL, and trip 4, when both consumers

had ordered good IM. Now suppose that the consumers’ behavior is consistent with the mixed logit IPA—that

is, 𝛾brand = 0. Although the substitute (PL’) shares the same brand as the consumers’ preferred good on trip

3 (PL) but not their preferred good on trip 4 (IM), the probability of acceptance should be the same on both

trips for each consumer. That is, 𝑝𝑖 = 𝑝𝑖𝑖 and 𝑝𝑖𝑖𝑖 = 𝑝𝑖𝑣.

Turning to the regression results, Table 4 reports the average marginal effects of the explanatory variables.35

Notice that there are two variables for each observable characteristic: an indicator for the substitute’s sharing

the out-of-stock product’s version of the characteristic, and a scalar variable for the fraction of the consumer’s

shopping trips where the purchased product shares the substitute’s version of the characteristic. The table is

organized so that the coefficients on the former (i.e., the 𝛾𝑘’s) are situated above the coefficients on the latter

(i.e., the 𝜁𝑘’s).

As far as bottled water is concerned, consumers’ behavior seems to be consistent with the mixed logit

IPA. For all four characteristics, the marginal effect associated with the fraction of purchases that share the
35Specifically, I compute the average marginal effect of a change in each variable on the probability of acceptance. (By

“average,” I mean the following. First, I compute the variables’ marginal effects for each individual observation; and second, I take
the average across all the observations. An alternative approach, which I do not employ, is to compute the marginal effects at the
sample means.)
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Table 4 – Testing the Mixed Logit IPA: Average Marginal Effects
from Probit Regressions

Product category
Variable Bottled water Flour
Brand

Sub shares OOS product’s version −0.012*** −0.066***
(0.004) (0.007)

Frac. of purchases with sub’s version 0.148*** 0.061***
(0.006) (0.011)

No. of bottles
Sub shares OOS product’s version −0.023***

(0.003)
Frac. of purchases with sub’s version 0.037***

(0.005)
Size of each bottle

Sub shares OOS product’s version 0.032***
(0.004)

Frac. of purchases with sub’s version 0.051***
(0.006)

Water type
Sub shares OOS product’s version 0.044***

(0.003)
Frac. of purchases with sub’s version 0.091***

(0.005)
Flour type

Sub shares OOS product’s version 0.124***
(0.008)

Frac. of purchases with sub’s version 0.026**
(0.010)

Quantity
Sub shares OOS product’s version −0.064***

(0.009)
Frac. of purchases with sub’s version 0.016

(0.011)
Whether bleached or not

Sub shares OOS product’s version 0.002
(0.007)

Frac. of purchases with sub’s version 0.039***
(0.010)

Sub’s price – OOS product’s price 0.021*** −0.003
(0.001) (0.002)

Observations 81,360 14,181
Pseudo 𝑅2 0.0670 0.0716

Notes: The dependent variable is whether a stockout substitute is accepted (=1) or rejected
(=0). The table reports average marginal effects, not coefficients. Standard errors are in
parentheses. (Because some households experience multiple stockouts, the standard errors
are clustered at the household level.)

* Significant at the 10 percent level.
** Significant at the 5 percent level.

*** Significant at the 1 percent level.
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substitute’s version of the characteristic is much larger in magnitude than the marginal effect associated

with the substitute’s (not) sharing the out-of-stock product’s version of the characteristic. This pattern is

particularly pronounced where brand and water type are concerned. All else equal, acceptance is 14.8 (9.1)

percentage points likelier if the consumer nearly always purchases products with the substitute’s brand (water

type) than if she virtually never does so.

By contrast, the results for flour are difficult to reconcile with the mixed logit IPA. Whether the substitute

matches the out-of-stock product’s brand, flour, or quantity is highly predictive of acceptance—even condi-

tional on the frequency with which the consumer purchases the substitute’s versions of these characteristics.

This is especially true where flour type is concerned; acceptance is 12.4 percentage points likelier if the

substitute shares the out-of-stock product’s flour type than if it does not. Notice that this marginal effect

greatly exceeds that associated with the fraction of trips where the purchased product shares the substitute’s

flour type; a consumer who almost always purchases the substitute’s flour type is only 2.6 percentage points

likelier to accept than a consumer who virtually never purchases the substitute’s flour type.

Why is the flour type of the out-of-stock product so predictive of the substitute’s acceptance or rejection?

Recall from Section 1 that specific types of flour are suited to specific recipes—bread flour for bread, all-

purpose flour for cupcakes, etc. Hence, if a consumer has a particular recipe in mind when she places her

order, she will choose a flour of the corresponding type. She is therefore likely to prefer a substitute of the

out-of-stock product’s flour type over a substitute of a different flour type—even a flour type that she purchases

more frequently—as only the former would enable her to bake the intended recipe (without modification).

In contrast to flour type, the marginal effect of the substitute’s sharing the brand or quantity of the out-of-

stock product is negative. At face value, this means that the substitute is likelier to be accepted if it differs

from the out-of-stock product with respect to these characteristics than if it matches them. However, this

counterintuitive result probably reflects the limitations of this reduced-form exercise, which—among other

omissions—largely abstracts from the role of price.

Discussion.—These results provide suggestive evidence that consumers’ purchases of bottled water are

consistent with the mixed logit IPA, whereas their purchases of flour are not. The key difference between

the categories is the amount of within-consumer preference variation. Regarding bottled water, individual

consumers’ preferences largely persist over time. By contrast, individual consumers’ preferences for flour

appear to vary considerably between trips, perhaps due to variation in intended recipes (for which specific

flour types may be optimal).
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However, these results also highlight the limitations of reduced-form analysis where the mixed logit IPA is

concerned; some determinants of acceptance are difficult to capture without an explicit model of consumer

preferences. For this reason, the next section adopts a structural approach to testing the mixed logit IPA.

6. Structural Evidence

In this section, I quantify the benefits of relaxing the mixed logit IPA. To do so, I estimate demand for

bottled water and flour using mixed probit—which does not suffer from an IPA constraint—as well as mixed

logit. Then I compare the models’ goodness of fit. The key point of comparison is the models’ ability to

predict whether a stockout substitute will be accepted or rejected. Whereas mixed logit imposes conditional

independence between a consumer’s initial order and her decision about the substitute (given the realization

of her random taste coefficients), mixed probit does not.

To enable mixed logit to compete with mixed probit on the best possible footing, I nonparametrically

estimate the joint distribution of the random coefficients. This ensures that consumers’ random taste co-

efficients provide the most accurate possible representation of their (time-invariant) tendencies to like or

dislike substitutes’ observable characteristics, thereby minimizing the influence of the mixed logit IPA.36 My

estimation method adapts the fixed grid approach from Fox, Kim, and Yang (2016) and Train (2008). In the

case of mixed probit, I employ a novel grid search approach to permit (some) correlation in the error terms.

A. Model

For simplicity, the conceptual framework in Section 5 focused on curbside pickup. Here, I extend this

framework to include in-store purchases and home delivery as well as curbside pickup. This provides more

observations per consumer, facilitating the identification of the distribution of random taste coefficients.

Consider a consumer 𝑖 who is shopping at time 𝑡. Irrespective of shopping channel (in-person, home

delivery, or curbside pickup),37 she faces a choice between 𝐽𝑡 differentiated goods and an outside option of

no purchase (“good 0”). She will choose whichever good 𝑗 ∈ J𝑡 ≡ {0, 1, . . . , 𝐽𝑡 } maximizes her conditional

indirect utility 𝑢𝑖 𝑗𝑡 . As in Section 5B, utility is a consumer-specific function of product characteristics (𝑥 𝑗)

36The mixed logit IPA only imposes independence between the order and the accept/reject decision conditional on representative
utility. Thus, misspecification of representative utility could lead to spurious failures of the mixed logit IPA.

37In principle, some goods with a small market share may be solely offered for in-store purchase (as opposed to home delivery
or curbside pickup). However, in my empirical estimation, I drop less popular products (because discrete choice models struggle
to accommodate alternatives with negligible choice shares). And, unpopular products aside, the online choice set should coincide
with its in-store counterpart (e.g., prices should be identical).
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and price (𝑝 𝑗𝑡 ):

𝑢𝑖 𝑗𝑡 = 𝑥 𝑗𝛽𝑖 − 𝛼𝑖𝑝 𝑗𝑡 + 𝜀𝑖 𝑗𝑡 .

Unlike in Sections 5A and 5B, the distribution of the error term 𝜀𝑖 𝑗𝑡 now depends on the model. It is i.i.d.

Gumbel in mixed logit, and i.i.d. multivariate normal in mixed probit.

If the consumer has placed an order for curbside pickup, her preferred product 𝑗 may go out of stock. In

that event, the store will offer a substitute 𝑠 ∈ J \ {0, 𝑗}. The consumer will accept the substitution if and

only if 𝑢𝑖𝑠𝑡 ⩾ 𝑢𝑖0𝑡 , where 𝑢𝑖0𝑡 ≡ 𝜀𝑖0𝑡 denotes the utility of the outside option.

Identification.—In what follows, I employ a nonparametric mixture estimator for both mixed logit and mixed

probit. Do the data afford sufficient variation to support this estimation method? Regarding mixed logit,

Fox et al. (2012) prove that the model is nonparametrically identified under fairly minimal data requirements

(e.g., local variation in product characteristics). As for mixed probit, Iaria and Wang (2023) show that the

model is semi-nonparametrically identified. That is, taking as given that the error terms are distributed i.i.d.

multivariate normal, the distribution of random coefficients is nonparametrically identified.

B. Estimation Method

I estimate the joint distribution of random coefficients (𝛽𝑖, 𝛼𝑖) nonparametrically. Following Fox, Kim, and

Yang (2016), I approximate the distribution function using a “fixed grid” estimator. In this approach, a

fixed grid of heterogeneous coefficients is selected before estimation. Then the probability weights on the

(pre-specified) grid points are estimated. In what follows, I first derive the likelihood function for these

weight parameters. (In so doing, I borrow from the exposition in Heiss, Hetzenecker, and Osterhaus [2022].)

Then I explain the expectation-maximization (EM) algorithm employed to maximize the likelihood function,

as well as the simulation required for the mixed probit model. To keep this subsection focused, a discussion

of the tuning parameters (such as the number and location of the grid points) is relegated to Appendix E. I

do the same with respect to the grid-search estimator for correlated errors in the mixed probit model.

The task is to estimate the joint distribution 𝐹 (𝛽, 𝛼) of random coefficients. I employ a finite-dimensional

sieve approximation that divides the support of (𝛽, 𝛼) into a grid of 𝑅 fixed vectors:

B =

©­­­­­«
(𝛽1, 𝛼1)

...

(𝛽𝑅, 𝛼𝑅)

ª®®®®®¬
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Having chosen the grid B, I estimate the probability weights 𝜃 = (𝜃1, . . . , 𝜃𝑅) on each of the coefficient

vectors in B. The weight 𝜃𝑟 on a coefficient vector 𝛽𝑟 ∈ B depends on the extent to which it is representative

of tastes across the population of consumers. To derive 𝜃𝑟 , focus first on an individual consumer 𝑖. Let

choose𝑖 𝑗𝑡 = 1 if good 𝑗 is her most-preferred product on trip 𝑡—that is to say, the ordered product (online) or

the purchased product (in-store)—and let choose𝑖 𝑗𝑡 = 0 otherwise.38

Supposing that trip 𝑡 is curbside pickup, consumer 𝑖’s ordered good—say, 𝑗—may go out of stock before

pickup. In that event, she will be offered a substitute good 𝑠 ≠ 𝑗 . To notate stockout substitutions, let

OOS𝑖 𝑗𝑡 = 1 if ordered good 𝑗 goes out of stock on trip 𝑡 and OOS𝑖 𝑗𝑡 = 0 otherwise.39 And, conditional on

ordered good 𝑗 going out of stock, let accept𝑖𝑠𝑡 = 1 if the consumer 𝑖 accepts good 𝑠 as a substitute on trip 𝑡

and accept𝑖𝑠𝑡 = 0 otherwise.

Due to the panel nature of the data, individual consumers are observed making repeated choices over time.

Consequently, the likelihood criterion concerns the probability of observing the entire sequence of choices

made by each consumer (Train 2009). Assuming that 𝛽𝑟 represents the true tastes of consumer 𝑖, this is given

by

𝑃𝑖 | 𝛽𝑟 , 𝛼𝑟 ≡
∏
𝑡∈T𝑖

∏
𝑗∈J𝑡

((
Pr[choose 𝑗 | 𝑥𝑡 ; 𝛽𝑟 , 𝛼𝑟 ]

)choose𝑖 𝑗𝑡

( ∏
𝑠∈J𝑡\{ 𝑗 }

(
Pr[accept 𝑠 | choose 𝑗 ; 𝑥𝑡 ; 𝛽𝑟 , 𝛼𝑟 ]

)accept𝑖𝑠𝑡
)OOS𝑖 𝑗𝑡

)
,

where T𝑖 denotes the set of all her trips.

Of course, consumer 𝑖’s true tastes are unknown to the researcher. To recover the unconditional probability

of her observed sequence of choices, compute the weighted average of the conditional choice probabilities

(𝑃𝑖 | 𝛽𝑟 , 𝛼𝑟 ) associated with each taste vector (𝛽𝑟 , 𝛼𝑟 ) ∈ B:

𝑃𝑖 ≡
𝑅∑︁
𝑟=1

𝜃𝑟 (𝑃𝑖 | 𝛽𝑟 , 𝛼𝑟 ).

In this equation, the probability weights 𝜃𝑟 measure the prevalence of tastes (𝛽𝑟 , 𝛼𝑟 ) across the population

of consumers.

38In a slight abuse of notation, I now use 𝑡 to index an individual consumer’s trips, as opposed to time.
39Where in-store shopping and home delivery are concerned, OOS𝑖 𝑗𝑡 = 0 for all goods 𝑗 .
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Finally, compute the log-likelihood criterion by summing 𝑃𝑖 over the population of consumers:

L =
1
𝑁

𝑁∑︁
𝑖=1

log(𝑃𝑖).

Computing the Conditional Choice Probabilities.—So far, I have abstracted away from the calculation of

conditional choice probabilities. In the case of mixed logit, they take a closed form. The probability that 𝑖

orders (purchases) good 𝑗 while shopping online (in-store) is given by

Pr[order 𝑗 | 𝑥𝑡 ; 𝛽𝑟 , 𝛼𝑟 ] =
exp(𝑥 𝑗𝛽𝑟 − 𝛼𝑟 𝑝 𝑗𝑡 )∑

𝑗′∈J exp(𝑥 𝑗′𝛽𝑟 − 𝛼𝑟 𝑝 𝑗′𝑡 )
.

If trip 𝑡 is curbside pickup, the probability that she accepts a substitute 𝑠 ∈ J𝑡 \ { 𝑗} is

Pr[accept 𝑠 | order 𝑗 ; 𝑥𝑡 ; 𝛽𝑟 , 𝛼𝑟 ] = Pr[accept 𝑠 | 𝑥𝑡 ; 𝛽𝑟 , 𝛼𝑟 ]

=
exp(𝑥𝑠𝛽𝑟 − 𝛼𝑟 𝑝𝑠𝑡 )

1 + exp(𝑥𝑠𝛽𝑟 − 𝛼𝑟 𝑝𝑠𝑡 )
.

The former equality follows from the mixed logit IPA, under which a consumer’s initial order is uninformative

of her accept/reject decision about the substitute (conditional on her time-invariant tastes).

Where mixed probit is concerned, the conditional choice probabilities lack closed forms and must be

simulated. To improve the accuracy of the simulated probabilities, I do not draw the simulated error terms

directly from a multivariate normal distribution. Rather, I draw the error terms from a scrambled “Sobol’

sequence” (Sobol’ 1967).40 For a given number of draws, this quasi-Monte Carlo method should more

closely approximate the underlying distribution than would pseudo-random draws from the corresponding

multivariate normal distribution.41

Simulation proceeds as follows. I take 𝑄 quasi-Monte Carlo draws, indexed by 𝑞 ∈ Q ≡ {1, . . . , 𝑄}. For

each draw 𝑞, I draw a vector of low-discrepancy multivariate normal errors (𝜀𝑞
𝑖 𝑗𝑡
) 𝑗∈J𝑡 for each consumer 𝑖 and

trip 𝑡.42 Then the probability of consumer 𝑖 ordering (purchasing) good 𝑗 while shopping online (in-store),

40Concerning a related simulation problem—namely, computing parametric mixed logit choice probabilities—recent work by
Czajkowski and Budziński (2019) suggests that scrambled Sobol’ sequences are more efficient than alternative simulation methods,
such as scrambled Halton sequences and modified Latin hypercube sampling.

41To preserve the balance properties of this quadrature rule, it is necessary that the total number of random draws—that is, the
product of (i) the number of orders and (ii) the number of simulations—be a power of two (Virtanen et al. 2020). Throughout, I
choose the number of simulations (as well as the number of orders modeled) so that this condition is satisfied.

42Precisely speaking, these draws are not from a multivariate normal distribution as such. Rather, they are based on a
low-discrepancy Sobol’ approximation (as described above).
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conditional on having tastes (𝛽𝑟 , 𝛼𝑟 ), is approximated by the fraction of draws 𝑞 in which 𝑗 maximizes her

conditional indirect utility 𝑢𝑖 𝑗𝑡 . That is,

P̂r[order 𝑗 | 𝑥𝑡 ; 𝛽𝑟 , 𝛼𝑟 ] =
1
𝑄

∑︁
𝑞∈Q

1
[
𝑢
𝑟𝑞

𝑖 𝑗𝑡
= max 𝑗′∈J𝑡 {𝑢

𝑟𝑞

𝑖 𝑗′𝑡 }
]
,

where

𝑢
𝑟𝑞

𝑖 𝑗𝑡
≡ 𝑥 𝑗𝛽𝑟 − 𝛼𝑟 𝑝 𝑗𝑡 + 𝜀𝑞𝑖 𝑗𝑡 .

Where curbside pickup is concerned, the probability of accepting a substitute depends on the consumer’s

original order. To see why, suppose that consumer 𝑖 orders good 𝑗 on trip 𝑡, only for 𝑗 to go out stock.

Conditional on having true tastes 𝛽𝑟 , the researcher knows that the error terms (𝜀𝑖 𝑗𝑡 ) 𝑗∈J𝑡 satisfy

𝑢𝑟𝑖 𝑗𝑡 = max
𝑗′∈J𝑡

{𝑢𝑟𝑖 𝑗′𝑡 }.

In other words, the consumer’s decision to order 𝑗 is informative of the error terms for the other goods 𝑗 ′ ≠ 𝑗 .

How does this association between order and substitution choices affect estimation? Supposing that

consumer 𝑖 has ordered good 𝑗 , any draws 𝑞 such that

𝑢
𝑟𝑞

𝑖 𝑗𝑡
< max
𝑗′∈J𝑡

{𝑢𝑟𝑞
𝑖 𝑗′𝑡 }

can be discarded. If 𝛽𝑟 represents consumer 𝑖’s true tastes, draws of the foregoing description would result

in her placing a different order than the one observed in the data. Hence, I approximate the probability that 𝑖

accepts a substitute 𝑠 ∈ J𝑡 \ { 𝑗} as the fraction of the remaining draws

Q★( 𝑗) ≡ {𝑞 ∈ Q : 𝑢𝑟𝑞
𝑖 𝑗𝑡

= max
𝑗′∈J𝑡

{𝑢𝑟𝑞
𝑖𝑠𝑡
}}

for which 𝑢𝑟𝑞
𝑖𝑠𝑡

exceeds the (simulated) utility of the outside option, 𝑢𝑟𝑞
𝑖0𝑡 . That is,

P̂r[accept 𝑠 | order 𝑗 ; 𝑥𝑡 ; 𝛽𝑟 , 𝛼𝑟 ] =
1

|Q★( 𝑗) |
∑︁

𝑞∈Q★ ( 𝑗 )
1[𝑢𝑟𝑞

𝑖𝑠𝑡
> 𝑢

𝑟𝑞

𝑖0𝑡 ] .

Because many draws 𝑞 will be discarded, estimation requires a large total number of draws 𝑄. To avoid

unacceptably long run times, I employ the JAX Python library (Bradbury et al. 2018) to spread computation
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across multiple GPUs as well as to optimize the code.

Expectation-Maximization (EM) Algorithm.—The fixed grid estimator suffers from a curse of dimensional-

ity rooted in the number of random coefficients. To be specific, I compute probability weights on 78,125 fixed

grid points in the estimates that follow. This multiplicity of parameters poses a problem for gradient-based

optimization. Inversion of the Hessian can fail, and optimization may become “stuck” in regions where the

likelihood function is inadequately approximated by a quadratic (Train [2009]).

To surmount this computational difficulty, I employ an “expectation-maximization” (EM) algorithm.

Rather than maximizing the likelihood function directly, an EM algorithm instead maximizes (conditional)

expectations of the likelihood while holding various parameters constant by turns. See Train (2008), Section

6 for a detailed discussion of the EM algorithm used in this paper.43

C. Data Details

Whenever a consumer purchases something (whether in the store, through curbside pickup, or via home

delivery), the data report the item’s UPC and price. But what about the rest of the consumer’s choice menu?

Which alternatives did she pass over in favor of her preferred product, and what were their prices?

To reconstruct the consumer’s choice menu, I first consult the chain’s product catalog to see the UPCs

of products in the relevant category. Then I match the resulting list against the UPCs of products sold at

the relevant store according to the scanner data. Regarding availability, I assume that a product was in the

consumer’s choice menu if a different consumer purchased it on the same day, at the same store. Failing that,

I check if the product was purchased on both the day before and the day after (not necessarily by the same

consumer). If neither of these conditions is satisfied, I assume that the product was not in the consumer’s

choice set (either because the product was out of stock, or because the store did not carry it at all).

I employ a slightly different procedure with respect to products that were ordered for curbside pickup but

later went out of stock. Observe that a product of this description was likely on the shelf at the time that

the consumer placed her order.44 That, in turn, suggests that the product was either available (i) the day of

the attempted stockout substitution or (ii) the day before. Accordingly, I impute the out-of-stock product’s

price as being the average purchase price on the day of the substitution or, failing that, the average purchase

price on the day before. If I do not observe any sales on either day, I impute the price as being the average

43In the case of mixed probit, a slight adjustment is necessary: probit kernels, not logit kernels, are computed for each agent.
44Unless a stockout was directly caused by an order for curbside pickup, there may be a delay before the store’s website indicates

that a given item is out of stock.
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purchase price on the nearest date for which observations appear in the data (up to seven days before or after

the stockout event).45

Due to computational constraints, I cannot model demand for all forty bottled-water products or all sixty-

one flour products. Rather, I exclude slow-selling or unusual products within each category, leaving me with

six bottled water products and ten flour products.46 For the same reason, I do not perform estimation on all

the available data. Instead, I focus on a random sample of households within each product category.47

Multi-Product and Multi-Unit Purchases.—In the data, consumers’ purchases depart from standard discrete

choice frameworks in two ways. First, consumers may purchase multiple distinct products on a single shopping

trip. For instance, someone might purchase 24-packs of both Ice Mountain and Aquafina on one trip. As

for the second departure from discrete choice, consumers may purchase multiple units of a single product on

one shopping trip. For example, someone might purchase two 24-packs of Ice Mountain bottled water on

one trip. Multiple purchases of this kind might be motivated by “stockpiling” to take advantage of discounts.

Within the product categories of bottled water and flour, purchases of more than one product on a single

shopping trip are fairly uncommon. Among analysis households, three (seven) percent of shopping trips

feature purchases of more than one bottled water (flour) product. I exclude all such transactions from my

structural estimation. By comparison, purchases of multiple units of a single product are much more common.

Roughly 25% (12%) of analysis households’ purchases of bottled water (flour) involve multiple units.

Because standard discrete choice models (such as mixed logit and mixed probit) do not accommodate

multi-unit purchases, the result may be biased predictions of consumers’ choices. And, where mixed logit

is concerned, these biased predictions could result in apparent violations of the model’s IPA property that

do not reflect within-consumer preference variation, but rather misspecification of the underlying choice

45The structural estimation here focuses on top-selling products, whose prices are comparatively easy to infer. By contrast, the
reduced-form regression in Section 5B also includes low-volume products, which may sell infrequently at a given store. If the
procedure defined in the main text fails to recover the price of a low-volume out-of-stock product, I instead compute the average
purchase price for stores in the same (narrowly-defined) geographic area on the nearest date with observations in the data (once
more, up to seven days before or after the stockout event). The assumption is that stores in the same geographic area will coordinate
on discounts (which might be advertised through mass mailings or billboards). To group stores by location, I rely on the most
granular geographic designation in the chain’s internal system. At all events, the results in Section 5B are robust to the inclusion
or exclusion of observations whose prices are imputed in this fashion.

46For bottled water, I estimate demand solely for the top six products. Together, these products command a 75% market
share among “analysis households” (i.e., households that experience one or more curbside stockout substitutions). As for flour,
I restrict attention to the top three brands (the private label, King Arthur, and Gold Medal) as well as the top two types of flour
(all-purpose and bread). I further exclude products with less than 1.75% market share, along with the one organic flour with
nontrivial sales. (To include that organic product, which represents 2% of analysis households’ purchases, I would need to add
another explanatory variable: an “organic” dummy.) This leaves me with ten products, which together represent 75% of purchases
by analysis households.

47To ensure the balance properties of the Sobol’ sequence, it is necessary that the product of the number of sampled purchases
(here, 4096) and the number of simulated error draws (here, 16,384) be a property of two. For the number of purchases to be
exactly 4096, I may drop some of the later purchases made by at most one sampled household.
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problem. To avoid such an outcome, it is important to minimize the influence of multi-unit purchases on

demand estimation. I do so by estimating demand for a subset of households who are especially unlikely to

make multi-unit purchases. In particular, I identify households with (i) zero purchases involving multiple

units of a single product and (i) ten or more purchases in total. For an additional discussion of multi-unit

purchases (including a summary of results when households with multi-unit purchases are not dropped), see

Appendix F.

D. Results: Mixed Probit versus Mixed Logit

The task is to compare mixed logit’s goodness of fit with that of mixed probit, especially in regard to the

alternate-choice data on stockout substitutions. I proceed as follows. First, I draw a random sample from the

set of households with ten or more purchases (and zero multi-unit purchases) in the data. (Recall from the

preceding subsection that I cannot include the universe of households due to memory constraints.) Then I

estimate demand using both mixed logit and mixed probit. Finally, I compare the two models with respect

to the predicted probabilities assigned to the choices of the same random subset of households that I earlier

used in estimation.

In addition to the “within-sample” comparison that I have just described, it is also instructive to perform

an “out-of-sample” comparison. How accurately do the models forecast the choices of a “holdout” sample of

households, whose data were not used in estimation? I will briefly discuss the motivations for this alternative

procedure—as well as its results—later in this subsection.

Within-Sample Goodness of Fit.—Table 5 compares the within-sample fit of mixed logit and mixed probit.

Panel A pertains to in-store purchases, home delivery purchases, and curbside pickup orders; while Panel B

attends to stockout substitutions in curbside pickup (i.e., the alternate-choice data). For each portion of the

data, I assess model fit based on the average predicted probability assigned to consumers’ observed choices.48

In computing this metric, I leverage the panel structure of the data to derive predicted probabilities that reflect

the posterior probabilities of individual consumers’ observed choices.49

The relative performance of mixed logit and mixed probit varies by data type. Focus first on in-store

48In Appendix G, I report results for an alternative measure of fit: the fraction of observations in which consumers’ observed
choices are assigned the highest predicted probability of any alternative (sometimes termed the “hit rate”).

49When a consumer is observed making multiple decisions, it may become apparent that she likes or dislikes certain kinds
of products. For instance, if a frequent flour buyer always opts for bread flour (as opposed to all-purpose), she probably likes
bread flours more than the “average” consumer does. This intuition can be harnessed to situate the taste coefficients (𝛽𝑖 , 𝛼𝑖) of an
individual consumer 𝑖 within the population distribution of random coefficients (Train 2009). To do so in the context of a fixed-grid
model, I follow the steps prescribed by Train (2008).
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Table 5 – Goodness of Fit: Mixed Logit versus Mixed Probit

Panel A. In-store purchases and
online orders

Bottled water Flour

Statistic
Mixed
logit

Mixed
probit

Mixed
logit

Mixed
probit

No. of households 220 220 294 294
No. of purchasesa 4096 4096 4096 4096
Purchased product’s predicted probability 0.272 0.273 0.195 0.197

(0.310) (0.322) (0.278) (0.285)
No. of available alternativesb 4.56 4.56 7.58 7.58

(1.10) (1.10) (1.62) (1.62)

Panel B. Stockout substitutions
No. of (attempted) stockout substitutions 316 316 324 324
. . . of which accepted 294 294 300 300
True decision’s predicted probability 0.955 0.964 0.936 0.946

(0.152) (0.148) (0.201) (0.208)

Panel C. Empirical specification
No. of random coefficients 7 7 7 7
No. of grid points 78,125 78,125 78,125 78,125
No. of simulated error drawsa 16,384 16,384

Notes: This table compares the within-sample fit of mixed probit and mixed logit models for the product
categories of bottled water and flour (see Sections 6B and 6D for details). Where relevant, standard
deviations appear in parentheses.

a The number of purchases and the number of draws are jointly chosen to maintain the balance
properties of the Sobol’ sequence.

b Excluding the “outside option” of no purchase.

purchases and online orders (Panel A). The models’ fit is comparable here, with consumers’ chosen bottled

water (flour) products being assigned a 0.1 (0.2) percentage point greater probability by mixed probit than

by mixed logit. By contrast, there is a perceptible difference in model fit where stockout substitutions are

concerned (Panel B). On average, consumers’ observed decisions to accept or reject bottled water (flour)

substitutes are assigned a 0.9 (1.0) percentage point greater probability by mixed probit than by mixed logit.

Notice that the disparity in model fit is only slightly larger for flour than bottled water. On the face of it, this

suggests that the mixed logit IPA does not drive the difference in model fit concerning stockout substitutions.

Recall that the descriptive evidence in Section 5B suggests that consumers’ purchases of bottled water are

consistent with the mixed logit IPA, whereas their purchases of flour are not. So, if the mixed logit IPA drives

the disparity in fit between mixed logit and mixed probit, one would expect this disparity to be markedly

larger for flour than for bottled water.
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Overfitting may have biased this model selection exercise, however. Due to the nonparametric estimation

approach, the mixed probit and mixed logit models feature nearly eighty thousand parameters each. This

complexity enables the models to closely match random noise in the data as well as underlying economic

factors.50 Hence, to the extent that within-sample differences in fit reflect the models’ ability to reproduce

random noise (as opposed to systematic determinants of demand), the results of a within-sample comparison

may be biased. I adopt an out-of-sample approach to address this potential source of bias.

Out-of-Sample Validation.—In contrast to within-sample methods of model selection, out-of-sample meth-

ods assess models’ ability to forecast the choices of a “holdout sample” of households whose data were not

used in estimation. The intuition is as follows. To the extent that an estimated model captures statistical

noise, as opposed to systematic determinants of demand, it will (incorrectly) project this random noise onto

the households in the holdout sample. As a result, the model’s accuracy in predicting the choices of the

holdout sample depends solely on the extent to which the model has captured generalizable (and economically

meaningful) determinants of consumers’ choices.51

Out-of-sample validation proceeds as follows. First, I randomly draw a “holdout sample” of households

whose data were not used to estimate the models above. Second, I compute the posterior distributions of

these holdout households’ random coefficients based on the empirical CDF of random coefficients from

the estimation results above. In computing these posterior distributions, I exclude the holdout households’

decisions to accept or reject stockout substitutes, leaving only their original orders (as well as their in-store

purchases and their orders for home delivery). This ensures that, so far as stockout substitutions are concerned,

the validation exercise is predictive in nature. Finally, I compute predicted probabilities of acceptance or

rejection based on these household-level posterior probability distributions.

Table 6 reports the results of out-of-sample validation. Concerning in-store purchases and online orders,

the models’ relative performance remains unchanged from the within-sample comparison. Consumers’

choices of bottled water (flour) are assigned a 0.1 (0.2) percentage point higher probability by mixed probit

than by mixed logit. By contrast, where stockout substitutions are concerned, the disparity in model fit is

50With a sufficient number of parameters, models can reproduce idiosyncrasies in consumer behavior that should be attributed
to the error term. To see the intuition, picture a consumer who is placing a curbside order for bottled water. She intends to
order a 24-pack of Ice Mountain bottled water, but mistakenly clicks on a 6-pack of Aquafina instead (and does not spot her
error). Although this mistake should be attributed to the error term, a sufficiently complicated model might nevertheless assign
our consumer’s mistake a fairly high predicted probability.

51For an accessible introduction to out-of-sample validation, see Parady, Ory, and Walker (2021); while Zhang and Yang (2015)
provide a more technical discussion. As far as applications are concerned, this approach has been employed in variety of economic
subdisciplines, including health economics (Deb and Trivedi 2002) and agricultural economics (Haener, Boxall, and Adamowicz
2001), as well as industrial organization (Bajari and Benkard 2005).
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Table 6 – Out-of-Sample Validation: Mixed Logit versus Mixed Probit

Panel A. In-store purchases and
online orders

Bottled water Flour

Statistic
Mixed
logit

Mixed
probit

Mixed
logit

Mixed
probit

No. of households 204 204 285 285
No. of purchasesa 4096 4096 4096 4096
Purchased product’s predicted probability 0.256 0.257 0.192 0.194

(0.306) (0.315) (0.277) (0.284)
No. of available alternativesb 4.63 4.63 7.48 7.48

(1.05) (1.05) (1.64) (1.64)

Panel B. Stockout substitutions
No. of (attempted) stockout substitutions 293 293 304 304
. . . of which accepted 276 276 283 283
True decision’s predicted probability 0.928 0.947 0.911 0.935

(0.213) (0.215) (0.246) (0.244)

Panel C. Empirical specification
No. of random coefficients 7 7 7 7
No. of grid points 78,125 78,125 78,125 78,125
No. of simulated error drawsa 16,384b 16,384b

Notes: This table compares the fit of mixed probit and mixed logit models on a holdout sample (see
Sections 6B and 6D for details). Where relevant, standard deviations appear in parentheses.

a The number of purchases and the number of draws are jointly chosen to maintain the balance
properties of the Sobol’ sequence.

b Excluding the “outside option” of no purchase.

even larger out-of-sample than within-sample. Consumers’ decisions to accept or reject bottled water (flour)

substitutes are assigned a 1.9 (2.4) percentage point larger probability by mixed probit than by mixed logit.

In other words, the disparity in model fit is perceptibly larger for flour than for bottled water. This is in

keeping with the descriptive evidence in Section 5B: namely, that consumers’ purchases of bottled water are

consistent with the mixed logit IPA, whereas their purchases of flour are not.

Notice that the out-of-sample validation magnifies qualitative patterns that were already present within-

sample. In particular, the following qualitative patterns are observed both within- and out-of-sample: (i)

mixed probit replicates consumers’ choices about stockout substitutes more accurately than mixed logit does;

and (ii) this disparity in model fit is larger for flour than for bottled water. However, both of these patterns are

more pronounced out-of-sample than within-sample. A possible explanation is that the within-sample model

comparison is biased by over-fitting. Within-sample, differences in fit between mixed logit and mixed probit

reflect both (a) the models’ abilities to capture systematic determinants of demand and (b) their capacities to
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reproduce statistical noise. Out-of-sample, by contrast, differences in model fit solely reflect (a).

7. Conclusion

Data on consumers’ preferences among unpurchased goods can help identify demand elasticities. However,

workhorse demand systems sometimes fail to replicate important substitution patterns in these “alternate

choice” data. This paper highlights one explanation for this shortcoming: the independence of preferred

alternatives (IPA) properties of logit models. Conditional logit imposes independence between a consumer’s

purchase and her preferences among unpurchased goods, while mixed logit imposes conditional independence

between the same (given the realizations of the random coefficients). To ascertain the extent to which these

properties impact demand estimates, I employ novel revealed-preference data on curbside pickup. The data

concern consumers’ willingness to accept store-selected substitutes when their preferred products go out of

stock.

Focusing on the product categories of bottled water and flour, I present descriptive evidence that consumer

behavior is sometimes inconsistent with the IPA properties of conditional and mixed logit. Regarding the

former, a conditional likelihood ratio test suggests that consumer’ purchases of both bottled water and flour

are inconsistent with the IPA property of conditional logit; contrary to the property, consumers’ original

order choices are correlated with their decisions to accept or reject substitutes. By way of an explanation,

I present descriptive evidence that consumers prefer substitutes whose observable characteristics resemble

those of the out-of-stock product. As for mixed logit, reduced-form analysis suggests that the behavior of

bottled water buyers is consistent with the model’s IPA property, whereas the behavior of flour buyers is not.

These contrasting results appeared to reflect differences between the two product categories in the amount of

within-consumer preference variation.

To quantify the bias resulting from the IPA property of mixed logit, I estimate demand for bottled water

and flour using two models: mixed logit and mixed probit (a model without an IPA property). Comparing

the models’ goodness of fit (both within- and out-of-sample), I find that mixed probit predicts the acceptance

or rejection of stockout substitutes more accurately than mixed logit does. Moreover, the disparity in fit is

more pronounced for flour than for bottled water. This is in keeping with the reduced-form evidence that

consumers’ purchases of bottled water are consistent with the IPA property of mixed logit, whereas their

purchases of flour are not.
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Besides mixed probit, there are many other models that relax the IPA property of mixed logit, such as

semi-nonparametric hedonic models (see Bajari and Benkard [2005]) or a pure-characteristics demand model

(see Berry and Pakes [2007]). A particularly promising candidate is the “random-coefficients nested logit”

model estimated in Brenkers and Verboven (2006) and Grigolon and Verboven (2014). Because its error terms

are not Gumbel, but rather Generalized Extreme Value (GEV), the model is unlikely to suffer from an IPA

constraint. Furthermore, existing empirical frameworks for alternate-choice data could be adapted to use this

more general model in place of mixed logit. In principle, many frameworks are amenable to this adaption,

including those proposed by Berry, Levinsohn, and Pakes (2004); Train and Winston (2007); Bachmann

et al.; and Grieco et al. (2023). However, the feasibility of incorporating random-coefficients nested logit

in these frameworks depends on the conditional choice probabilities of consumers’ alternate choices (e.g.,

second choices or accept/reject decisions in stockout data). Do these probabilities take a parsimonious and

predictable form as the number of alternatives and “nests” grows? I leave to future work the question of

whether this is true and, if so, the extent to which the resulting model can match the substitution patterns in

alternate choice data.
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Supplementary Appendix

A. Proof of Lemma 1

Denote the representative utility of good 𝑗 ∈ {𝐴, 𝐵} by 𝑣 𝑗 ≡ 𝑥 𝑗𝛽 − 𝛼𝑝 𝑗𝑡 and, without loss of generality,

normalize 𝑣𝐵 = 0.52 Then

𝑃𝐴 ≡ Pr
[
𝑢𝑖𝐴𝑡 > 𝑢𝑖𝐵𝑡

�� max{𝑢𝑖𝐴𝑡 , 𝑢𝑖𝐵𝑡 } < 𝐾
]

= Pr
[
𝑣𝐴 + 𝜀𝑖𝐴 > 𝜀𝑖𝐵

�� max{𝑣𝐴 + 𝜀𝑖𝐴, 𝜀𝑖𝐵} < 𝐾
]

= E𝜀𝑖𝐴
[
Pr

[
𝑣𝐴 + 𝜀𝑖𝐴 > 𝜀𝑖𝐵

�� max{𝑣𝐴 + 𝜀𝑖𝐴, 𝜀𝑖𝐵} < 𝐾; 𝜀𝑖𝐴
] ��� 𝑣𝐴 + 𝜀𝑖𝐴 < 𝐾]

. (3)

where the last equality follows from the law of iterated expectations.

Consider the inner component of (3), namely, the conditional probability

𝑃𝐴 | 𝜀𝑖𝐴 ≡ Pr
[
𝑣𝐴 + 𝜀𝑖𝐴 > 𝜀𝑖𝐵

�� max{𝑣𝐴 + 𝜀𝑖𝐴, 𝜀𝑖𝐵} < 𝐾; 𝜀𝑖𝐴
]

= Pr
[
𝜀𝑖𝐵 < 𝑣𝐴 + 𝜀𝑖𝐴

�� max{𝑣𝐴 + 𝜀𝑖𝐴, 𝜀𝑖𝐵} < 𝐾; 𝜀𝑖𝐴
]
. (4)

Because max{𝑣𝐴 + 𝜀𝑖𝐴, 𝜀𝑖𝐵} < 𝐾 , the random variable 𝜀𝑖𝐵 possesses the support (−∞, 𝐾). Eq. (4) can thus

be expressed as the fraction

𝑃𝐴 | 𝜀𝑖𝐴 =
𝐹𝜀 (𝑣𝐴 + 𝜀𝑖𝐴)

𝐹𝜀 (𝐾)
, (5)

where 𝐹𝜀 (𝜀′) ≡ exp
(
− 𝑒−𝜀′

)
denotes the cumulative distribution function (CDF) of the Gumbel distribution.

52To see why this assumption is without loss of generality, decompose both goods’ utilities into their respective representative
utility and error terms;

Pr
[
𝑢𝑖𝐴 > 𝑢𝑖𝐵

�� max{𝑢𝑖𝐴, 𝑢𝑖𝐵} < 𝐾
]
= Pr

[
𝑣𝐴 + 𝜀𝑖𝐴 > 𝑣𝐵 + 𝜀𝑖𝐵

�� max{𝑣𝐴 + 𝜀𝑖𝐴, 𝑣𝐵 + 𝜀𝑖𝐵} < 𝐾
]
.

Then subtract 𝑣𝐵 from each quantity on the right-hand side to obtain

Pr
[
𝑢𝑖𝐴 > 𝑢𝑖𝐵

�� max{𝑢𝑖𝐴, 𝑢𝑖𝐵} < 𝐾
]
= Pr

[
𝑣𝐴 + 𝜀𝑖𝐴 − 𝑣𝑖𝐵 > 𝜀𝑖𝐵

�� max{𝑣𝐴 + 𝜀𝑖𝐴 − 𝑣𝑖𝐵, 𝜀𝑖𝐵} < 𝐾 − 𝑣𝑖𝐵
]

≡ Pr
[
𝑣′𝐴 + 𝜀𝑖𝐴 > 𝜀𝑖𝐵

�� max{𝑣′𝐴 + 𝜀𝑖𝐴, 𝜀𝑖𝐵} < 𝐾
′] ,

where 𝑣′
𝐴
≡ 𝑣𝐴 − 𝑣𝐵 and 𝐾 ′ ≡ 𝐾 − 𝑣𝐵.
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Substituting (5) into (3) yields

𝑃𝐴 = E𝜀𝑖𝐴

[
𝐹𝜀 (𝑣𝐴 + 𝜀𝑖𝐴)

𝐹𝜀 (𝐾)

���� 𝑣𝐴 + 𝜀𝑖𝐴 < 𝐾]
=

E𝜀𝑖𝐴
[
𝐹𝜀 (𝑣𝐴 + 𝜀𝑖𝐴)

�� 𝑣𝐴 + 𝜀𝑖𝐴 < 𝐾]
𝐹𝜀 (𝐾)

. (6)

Now employ the definition of expectation to write (6) as an integral. Notice that 𝑣𝐴 + 𝜀𝑖𝐴 < 𝐾 implies

𝜀𝑖𝐴 ∈ (−∞, 𝐾 − 𝑣𝐴), so the probability density function (PDF) of 𝜀𝑖𝐴 is given by 𝑓𝜀 (𝜀′𝑖𝐴)
/
𝐹𝜀 (𝐾 − 𝑣𝐴).

(Here, 𝑓𝜀 (𝜀′) ≡ exp
(
− 𝑒−𝜀′ − 𝜀′

)
denotes the PDF of the Gumbel distribution.) As a result,

𝑃𝐴 =
1

𝐹𝜀 (𝐾)

∫ 𝐾−𝑣𝐴

𝜀′
𝑖𝐴
=−∞

𝐹𝜀 (𝑣𝐴 + 𝜀′𝑖𝐴)
𝑓𝜀 (𝜀′𝑖𝐴)𝑑 (𝜀

′
𝑖𝐴
)

𝐹𝜀 (𝐾 − 𝑣𝐴)

=
1

exp
(
− 𝑒−𝐾

) ∫ 𝐾−𝑣𝐴

𝜀′
𝑖𝐴
=−∞

exp
(
−𝑒−(𝑣𝐴+𝜀′𝑖𝐴)

) exp
(
− 𝑒−𝜀′𝑖𝐴 − 𝜀′

𝑖𝐴

)
𝑑𝜀′
𝑖𝐴

exp
(
− 𝑒−(𝐾−𝑣𝐴)

)
= exp

(
𝑒−𝐾

)
exp

(
𝑒−(𝐾−𝑣𝐴) ) ∫ 𝐾−𝑣𝐴

𝜀′
𝑖𝐴
=−∞

exp
(
− 𝑒−(𝑣𝐴+𝜀′𝑖𝐴)

)
exp

(
− 𝑒−𝜀′𝑖𝐴 − 𝜀′𝑖𝐴

)
𝑑𝜀′𝑖𝐴

= exp
(
𝑒−𝐾 + 𝑒−(𝐾−𝑣𝐴) ) ∫ 𝐾−𝑣𝐴

𝜀′
𝑖𝐴
=−∞

exp
(
− 𝑒−𝜀′𝑖𝐴𝑒−𝑏

)
exp

(
− 𝑒−𝜀′𝑖𝐴 − 𝜀′𝑖𝐴

)
𝑑𝜀′𝑖𝐴

= exp
( (
𝑒−𝑣𝐴 + 1

)
𝑒−(𝐾−𝑣𝐴)

) ∫ 𝐾−𝑣𝐴

𝜀′
𝑖𝐴
=−∞

(
exp

(
− 𝑒−𝜀′𝑖𝐴

) )exp(−𝑣𝐴)
exp

(
− 𝑒−𝜀′𝑖𝐴 − 𝜀′𝑖𝐴

)
𝑑𝜀′𝑖𝐴

Setting 𝑢 ≡ exp
(
−𝑒−𝜀′𝑖𝐴

)
and 𝑑𝑢 ≡ exp

(
−𝑒−𝜀′𝑖𝐴 − 𝜀′

𝑖𝐴

)
𝑑𝜀′
𝑖𝐴

yields

𝑃𝐴 = exp
( (
𝑒−𝑣𝐴 + 1

)
𝑒−(𝐾−𝑣𝐴)

) ∫ exp(− exp(−(𝐾−𝑣𝐴) ) )

𝑢=0
𝑢exp(−𝑣𝐴)𝑑𝑢

= exp
( (
𝑒−𝑣𝐴 + 1

)
𝑒−(𝐾−𝑣𝐴)

) [
𝑢exp(−𝑣𝐴)+1

𝑒−𝑣𝐴 + 1

]exp(− exp(−(𝐾−𝑣𝐴) ) )

𝑢=0

= exp
( (
𝑒−𝑣𝐴 + 1

)
𝑒−(𝐾−𝑣𝐴)

) (
exp

(
− 𝑒−(𝐾−𝑣𝐴) ) )exp(−𝑣𝐴)+1

𝑒−𝑣𝐴 + 1

= exp
( (
𝑒−𝑣𝐴 + 1

)
𝑒−(𝐾−𝑣𝐴)

) exp
(
−

(
𝑒−𝑣𝐴 + 1

)
𝑒−(𝐾−𝑣𝐴)

)
𝑒−𝑣𝐴 + 1

=
1

𝑒−𝑣𝐴 + 1

=
𝑒𝑣𝐴

1 + 𝑒𝑣𝐴 . ■
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B. Comparison of Theorem 1 with Prior Theoretical Results

Beggs, Cardell, and Hausman (1981) derive a result that closely resembles Theorem 1. However, their result

applies to different types of alternate-choice data. Whereas Theorem 1 pertain to data on consumers’ pairwise

preferences among unpurchased goods, Cardell and Hausman’s result applies to second-choice data (as well

as more comprehensive rankings of the choice set).

Beggs, Cardell, and Hausman’s result is as follows. Letting 𝑗 and 𝑗 ′ be any two goods in J , consider

the joint probability that a consumer both (i) purchases good 𝐴 and (ii) lists good 𝐵 as her second-most-

preferred good. Cardell and Hausman show that this joint probability equals the product of the unconditional

probabilities of observing (i) and (ii). Formally,

Pr[𝑢𝑖𝐴𝑡 = max 𝑗∈J 𝑢𝑖 𝑗𝑡 and 𝑢𝑖𝐵𝑡 = max 𝑗∈J\{𝐴} 𝑢𝑖 𝑗𝑡 ] = Pr[𝑢𝑖𝐴𝑡 = max 𝑗∈J 𝑢𝑖 𝑗𝑡 ]

· Pr[𝑢𝑖𝐵𝑡 = max 𝑗∈J\{𝐴} 𝑢𝑖 𝑗𝑡 ]

As to more comprehensive rankings of consumers’ preferences, let S ⊆ J be any subset of the goods on

offer. Then the probability of observing a given ranking of the goods in S can be written as the product of

|S| − 1 logit formulas.53

These results indicate that conditional logit restricts consumers’ second choices—as well as more compre-

hensive rankings of the choice set—in a manner that resembles Theorem 1. (Whether Beggs, Cardell, and

Hausman’s findings imply Theorem 1 is not immediately clear.)

C. Monte Carlo Tests of Theorem 1

In this appendix, I perform Monte Carlo simulations to verify Theorem 1.

Consider a market with 𝐽 goods, indexed by 𝑗 ∈ J ≡ {1, . . . , 𝐽}.54 Utility is specified as

𝑢𝑖 𝑗 = 𝑥 𝑗𝛽 − 𝛼𝑝 𝑗 + 𝜀𝑖 𝑗 ≡ 𝑣 𝑗 + 𝜀𝑖 𝑗 ,

53Formally, let 𝑟 ≡ (𝑟1, 𝑟2, . . . , 𝑟𝑆) be any ordinal ranking of the goods in S such that 𝑢𝑖𝑟1𝑡 > 𝑢𝑖𝑟2𝑡 > · · · > 𝑢𝑖𝑟𝑆 𝑡 . Then

Pr[𝑢𝑖𝑟1𝑡 > 𝑢𝑖𝑟2𝑡 > · · · > 𝑢𝑖𝑟𝑆 𝑡 ] = Pr[𝑢𝑖𝑟1𝑡 = max 𝑗∈S 𝑢𝑖 𝑗𝑡 ] · Pr[𝑢𝑖𝑟2𝑡 = max 𝑗∈S\{𝑟1 } 𝑢𝑖 𝑗𝑡 ]
· Pr[𝑢𝑖𝑟3𝑡 = max 𝑗∈S\{𝑟1 ,𝑟2 } 𝑢𝑖 𝑗𝑡 ] · · · Pr[𝑢𝑖𝑟𝑆−1𝑡 > 𝑢𝑖𝑟𝑆 𝑡 ] .

(This notation for preference rankings is borrowed from Hausman and Ruud [1987].)
54For simplicity, I abstract from the inside/outside good distinction.
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where 𝜀𝑖 𝑗 is distributed i.i.d. Gumbel. (For simplicity, I abstract from the panel dimension of the data as

well as within-product price variation over time.) The task is to ascertain whether

Pr
[
𝑢𝑖𝐵 > 𝑢𝑖𝐶

�� 𝑢𝑖𝐴 = max 𝑗∈J 𝑢𝑖 𝑗
]
= Pr[𝑢𝑖𝐵 > 𝑢𝑖𝐶] (7)

To do so, I compare (i) the conditional probability of preferring 𝐵 over 𝐶—given 𝐴 is the most-preferred

good—with (ii) the unconditional probability of the same. In computing (i), I do not directly impose the

mixed logit IPA (i.e., Theorem 1). Rather, I randomly draw errors from the Gumbel distribution. Then I

discard any draws for which 𝐴 is not the most-preferred good. Finally, I compute the fraction of the remaining

draws in which 𝐵 is preferred to 𝐶. This comparison is repeated for 𝑆 different random draws of the goods’

representative utilities.

Each simulation 𝑠 ∈ S ≡ {1, . . . 𝑆} proceeds as follows. I begin by randomly drawing the representative

utility 𝑣 𝑗𝑠 of each good 𝑗 ∈ J . In so doing, I treat the goods’ representative utilities as (mutually independent)

random uniform variables with support [−4.5, 3.5].55 With the representative utility draws in hand, I proceed

to compute the probability that 𝐵 is preferred to 𝐶—both unconditionally, and conditional on 𝐴 being the

most-preferred good. The unconditional probability is given by the familiar logit formula:

Pr[𝑢𝑖𝐵𝑟 > 𝑢𝑖𝐶𝑟 | (𝑣 𝑗𝑠) 𝑗∈J] =
exp(𝑣𝐵𝑠)

exp(𝑣𝐵𝑠) + exp(𝑣𝐶𝑠)
. (8)

As for the conditional probability of preferring 𝐵 to 𝐶 (given 𝐴 is the most-preferred good), I simulate it

by randomly drawing 𝑁 different i.i.d. Gumbel errors for each good 𝑗 , {𝜀𝑖 𝑗}𝑁𝑖=1.56 Then the conditional

probability is approximated by:

P̂r[𝑢𝑖𝐵𝑡 > 𝑢𝑖𝐶𝑡
�� 𝑢𝑖𝐴𝑡 = max 𝑗∈J 𝑢𝑖 𝑗𝑡 ; (𝑣 𝑗𝑠) 𝑗∈J] =

𝑁∑︁
𝑖=1

1
[
𝑣𝐵𝑟 + 𝜀𝑖𝐵 > 𝑣𝐶𝑟 + 𝜀𝑖𝐶

and 𝑣𝐴𝑟 + 𝜀𝑖𝐴 = max 𝑗∈J{𝑣 𝑗𝑟 + 𝜀𝑖 𝑗}
]

/ 𝑁∑︁
𝑖=1

1
[
𝑣𝐴𝑟 + 𝜀𝑖𝐴 = max 𝑗∈J{𝑣 𝑗𝑟 + 𝜀𝑖 𝑗}

]
. (9)

55This choice of support follows the Monte Carlo experiments in Heiss, Hetzenecker, and Osterhaus (2022).
56Regarding the absence of an 𝑠 subscript: for computational simplicity, I use the same ten million Gumbel draws for all

simulations.
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With (8) and (9) in hand, I proceed to compute the absolute value of the difference between them:

AbsDiff𝑠 =
��P̂r[𝑢𝑖𝐵𝑡 > 𝑢𝑖𝐶𝑡

�� 𝑢𝑖𝐴𝑡 = max 𝑗∈J 𝑢𝑖 𝑗𝑡 ; (𝑣 𝑗𝑠) 𝑗∈J] − Pr[𝑢𝑖𝐵𝑟 > 𝑢𝑖𝐶𝑟 | (𝑣 𝑗𝑠) 𝑗∈J]
��

Having repeated this process for 𝑆 simulations, I compute the average absolute value of the difference

between the conditional and unconditional probabilities: 𝑆−1 ∑𝑆
𝑠=1 AbsDiff𝑠.

Numerical Details and Results.—I perform the steps described above for markets of two different sizes:

three goods and four goods. For each market size, I synthesize 100 different representative utility combinations

(drawn, as described above, from the uniform distribution with support [-4.5, 3.5]). To approximate the

conditional choice probabilities, I take ten million i.i.d. Gumbel draws per good.

The results of this simulation are as follows. For the three-good market, the mean absolute difference

between the conditional and unconditional probability is 0.000265 (with a standard deviation of 0.000483).

And for the four-good market, the mean absolute difference between the conditional and unconditional

probability is 0.000457 (with a standard deviation of 0.000853).

D. Cross-Characteristic Correlations in (Dis)similarity

Appendix Table 1 reports cross-characteristic correlations in the substitutes’ similarity or dissimilarity with

respect to two characteristics. Letting 𝑖 index rows and 𝑗 index columns, cell entry 𝑖, 𝑗 reports the correlation

between the substitute’s (i) matching the out-of-stock product on characteristic 𝑖 and (ii) matching the out-

of-stock product on characteristic 𝑗 .

For the most part, similarity between the substitute and the out-of-stock product in one characteristic is

inversely correlated with similarity in another. There are only a handful of exceptions. (For instance, a

substitute flour is more likely to share the same flour type as the out-of-stock product if it also shares its

“bleached” status.)

E. Details on the Structural Estimation Method

This appendix describes two aspects of the structural estimation process. These include (i) the estimation of

correlations among the mixed probit error terms and (ii) the choice of tuning parameters (in both mixed logit

and mixed probit).
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Appendix Table 1 – Correlation Matrices of Similarity in Characteristics between Substitute
and Out-Of-Stock Product

Panel A. Bottled water

Same
brand

Similara

bottle size
Similara

no. of bottles
Same water

type

Same brand 1.00
Similara bottle size −0.26 1.00
Similara no. of bottles −0.31 −0.11 1.00
Same water type −0.02 −0.14 −0.09 1.00

Notes: Letting 𝑖 index rows and 𝑗 index columns, the entry in cell 𝑖, 𝑗 indicates the correlation
between the substitute and out-of-stock product sharing characteristic 𝑖 and their sharing
characteristic 𝑗 as well. There are 106,484 observations.

a Within 10%.
Panel B. Flour

Same
brand

Same “bleached”
status

Similara

quantity
Same flour

type

Same brand 1.00
Same “bleached” status −0.05 1.00
Similar quantitya −0.49 −0.26 1.00
Same flour type 0.02 0.07 −0.16 1.00

Note: 26,242 observations. (See Panel A for details.) a Within 10%.

Grid Search Estimator of Error Correlations in Mixed Probit.—Trip-specific circumstances sometimes

shift multiple goods’ utilities, causing their error terms to be correlated. To see the intuition, recall the

example from Section 1 of a baker who usually bakes bread (for which bread flour is ideal), but who

occasionally bakes cupcakes instead (for which all-purpose flour is preferable). On the rare trips when she

plans to bake bread, there will be a positive shock to the utilities of all-purpose flours but a negative shock to

those of bread flour. Now consider how these trips will figure in a discrete choice model. The positive shocks

to all-purpose flours’ utilities will appear as positive realization of those products’ error terms, whereas the

negative shocks to bread flours’ utilities will manifest as negative realizations. Thus, the circumstances of a

given shopping trip (and, in particular, the planned recipe) cause the error terms of products of a given flour

type to be correlated with each other.

The preceding example highlights the following fact. In markets where trip-specific circumstances affect

the utilities of multiple goods, a demand system should accommodate correlated errors. This is especially

true when alternate choice data are available. In that event, the inclusion of correlated errors should enable

the demand system to better match consumers’ observed preferences over unpurchased products (as reported

in the alternate choice data). And, to the extent that preferences over unpurchased products are indicative of
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product substitutability, the final result is more accurate estimates of demand elasticities.

Unlike mixed logit,57 the mixed probit model accommodates correlated errors. However, it is challenging

to recover the structure of the correlation. One must simulate choice probabilities not only for every point of

the fixed grid, but also for each possible correlation structure. It is therefore helpful to minimize the number

of potential correlation structures considered. For this reason, I adopt a grid search approach to estimating

the correlations between error terms. This method is popular in the machine learning literature, where it is

used for a different purpose (namely, tuning so-called “hyperparameters”). Here the method appeals for the

same overarching reason: it minimizes the number of times a computationally burdensome procedure must

be repeated.

The grid search estimator proceeds as follows. First, I propose a general structure for the correlations

among the error terms. I begin by identifying a cluster of products within the category whose error terms are

especially likely to be correlated. In so doing, I consult the descriptive evidence in Section 5B concerning

within-consumer preference variation across trips. For the product category of flour, I focus on within-

consumer preference variation with respect to flour type. The idea is that flours of the type needed for the

consumer’s intended recipe will enjoy positive utility shocks (which manifest as positive, correlated error

terms). As for bottled water, the descriptives provide little guidance regarding which (if any) characteristics

experience within-consumer variation in tastes. Resorting to intuition, I opt to model correlation centered

on bottle count, the idea being that consumers will sometimes require more water bottles than usual due to

trip-specific circumstances (such as preparing for a long road trip).

Having identified a cluster of products whose error terms may be correlated, I compute correlated errors as

follows. Assume that the products’ error terms are distributed multivariate normal such that (i) all the error

terms’ variances equal one; (ii) the error terms corresponding to products within the “correlation cluster”

exhibit a common covariance of 𝜎 with one other, but are independent of the error terms of products outside

the “correlation cluster;” and (iii) the error terms of products outside the “correlation cluster” are independent

of both each other and of the error terms of products within the “correlation cluster.” To see what the resulting

covariance matrix might look like, recall the stylized four-good market from Section 1 in which products A

and B are close substitutes for each other, but not for goods C and D (which, in turn, are close substitutes for

each other but not for A or B). In relation to this stylized market, I might consider the following covariance

57Only generalizations of mixed logit, such as mixed nested logit, can incorporate correlated errors.
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matrix: ©­­­­­­­­«

Var(𝜀𝐴) Cov(𝜀𝐴, 𝜀𝐵) Cov(𝜀𝐴, 𝜀𝐶) Cov(𝜀𝐴, 𝜀𝐷)

Cov(𝜀𝐵, 𝜀𝐴) Var(𝜀𝐵) Cov(𝜀𝐵, 𝜀𝐶) Cov(𝜀𝐵, 𝜀𝐷)

Cov(𝜀𝐶 , 𝜀𝐴) Cov(𝜀𝐶 , 𝜀𝐵) Var(𝜀𝐶) Cov(𝜀𝐶 , 𝜀𝐷)

Cov(𝜀𝐷 , 𝜀𝐴) Cov(𝜀𝐷 , 𝜀𝐵) Cov(𝜀𝐶 , 𝜀𝐶) Var(𝜀𝐷)

ª®®®®®®®®¬
=

©­­­­­­­­«

1 𝜎 0 0

𝜎 1 0 0

0 0 1 0

0 0 0 1

ª®®®®®®®®¬
Notice that I only model the error correlations within one “cluster” of products within the market: that of

goods A and B. Ideally, I would also estimate the correlation between the error terms of goods C and D (the

other pair of close substitutes). However, modeling correlations for two clusters, as opposed to one, would

exponentially increase the computational burden.58 Besides, when there are only two product clusters (as is

the case here), the key qualitative patterns in the data can be captured by modeling the correlations of just one

cluster’s errors.59 Happily, such is case for the product categories of bottled water and flour. Regarding the

former category, I model correlations among the error terms of products with twenty-four bottles (as distinct

from forty, the other top-selling size). As for the latter category, I model the correlations in the error terms

of bread flours (as distinct from all-purpose flours, the other top-selling flour type).

Having identified a cluster of products whose error terms may be correlated, I specify a set C =

{𝜎1, . . . , 𝜎𝐶} of possible covariance parameters. Then I estimate demand separately for each covariance

parameter 𝜎𝑐 ∈ C. Each time, I follow the steps described above. The only difference between iterations

𝑐 = 1, . . . , 𝐶 concerns the simulated error terms. On iteration 𝑐, I assume that the error terms are distributed

multivariate normal with the covariance matrix implied by (i) the cluster structure under consideration and

(ii) the specific covariance parameter 𝜎𝑐 being evaluated. (Notice that the estimated distribution of the

random coefficients (𝛽𝑖, 𝛼𝑖) will vary across iterations so as to maximize the likelihood function given the

error draws.)

With the estimates in hand, I identify the covariance parameter that results in the largest log likelihood

at convergence. Then I perform estimation a second time with that parameter. (Without this step, the

log likelihood for the “optimal” covariance parameter may be upwardly biased due to random noise in the

58More precisely, the computational burden is squared. For instance, if I considered five different levels of correlation per
cluster—0, 0.1, 0.2, 0.3, and 0.4—evaluating the Cartesian product of the candidate correlations would require 52 = 25 rounds of
estimation.

59To see why, suppose that a consumer has purchased good A, so her second–most-preferred product is probably B. Because the
consumer purchased good A, whose errors are correlated with those of good B, the realization of good B’s error term is probably
positive. Thus, the model would likely predict that good B is the consumer’s second–most-preferred product. Now suppose,
instead, that the consumer has purchased good C, in which case D is probably her second–most-preferred product. In this case,
the realizations of A and B’s errors would be disproportionately likely to be negative, thereby increasing the probability that the
model assigns good D greater utility than A or B.
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simulated probabilities.60)

Tuning Parameters.—It is necessary to choose both the number and location of the fixed grid points before

estimation.

Regarding the number of grid points, my approach closely resembles that employed by Train (2008). That

is to say, I begin by determining the maximum number of grid points that can fit within the memory. Then

I divide this total number of grid points evenly among the random coefficients, so that each coefficient’s

support will be discretized into the same number of values. The final result is that the support of each random

coefficient is approximated by five distinct fixed points (which happens to be the same number as one of

Train’s specifications [2008].)

Having selected the number of distinct fixed grid values per random coefficient, it remains to determine

their locations. I follow Heiss, Hetzenecker, and Osterhaus (2022) in basing the grid points’ locations on

parametric mixed logit estimates. Specifically, I center the grid on the mean coefficient estimates from the

parametric model. Then, for each coefficient, I place the outermost points two (estimated) standard deviations

above and below the mean. In the case of mixed probit, I divide each point by
√

1.6 to adjust for the difference

in normalization between multinomial probit and logit models (see Train [2009]).

F. Multiple-Unit Purchases of Individual Products

Contrary to standard discrete choice frameworks, consumers sometimes purchase multiple units of a single

product on one shopping trip. This poses a problem for the model selection exercise in Section 6. Recall

that the IPA property of mixed logit imposes conditional independence between consumers’ orders choices

and their decisions to accept or reject the substitute, given their time-invariant tendencies to like or dislike

the substitute (based on its observable characteristics). The key assumption is that consumers’ preferences

do not vary between trips in a fashion that is correlated across products. However, if consumers’ choice sets

include multiple units of individual products, their observed behavior may be inconsistent with the mixed

logit IPA for a different reason: the model misspecifies the underlying choice problem. To see why, consider

a consumer who likes to purchase bottled water in large quantities. She might consider the following to

be her top two purchase options: (i) a 40-pack of the private label and (ii) two 24-packs of Ice Mountain.

However, standard discrete choice models exclude option (ii), as they assume that she will purchase only a
60The “optimal” covariance parameter 𝜎𝑐 is chosen because it maximizes the log likelihood at convergence. However, the

log likelihood is evaluated with error because it is simulated—and sometimes the simulated probabilities of consumers’ observed
choices exceed the true probabilities (perhaps because the error draws spuriously align with consumers’ observed choices).
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single unit of a given product. In consequence, discrete choice models might underestimate the probability

that she purchases Ice Mountain while overestimating the probability that she purchases other brands that

offer larger packs.

One possible solution would be to treat different quantities of a product as distinct alternatives. For

instance, purchasing one 24-pack of Ice Mountain would be treated as a different alternative from purchase

two 24-packs of Ice Mountain. However, the data on stockout substitutions do not report the requested number

of units of the out-of-stock product. Although it seems likely that the consumer would be offered a quantity

of the substitute such that the total quantity (i.e., size per unit times number of units) would closely match

the out-of-stock product’s in most situations, it also seems probable that rejection would be especially likely

in situations where the substitute’s total quantity diverges from the out-of-stock product’s. For this reason, I

do not attempt to impute the number of units requested of the out-of-stock product based on the substitute’s

total quantity. Instead, I identify households who are especially unlikely to purchase multiple units of a single

product. To do so, I find households for whom I observe (i) zero purchases involve multiple units and (i) ten

or more purchases in total. (In principle, I could solely drop transactions featuring multi-unit purchases, as

opposed to entire households. However, because multi-unit purchases are so common [see Section 6C], it

seems plausible that a large fraction of households entertained multi-unit purchases during trips where they

ultimately purchased a single unit.)

I quantify the importance of excluding households with multi-unit purchases as follows. First, I draw

a random sample of households from the universe of sample households (as opposed to those with 10+

transactions and 0 multi-unit purchases). And second, I repeat the model selection exercises in Section 6D

on this alternative sample. So far as purchases and online orders are concerned, the results resemble those

presented in the main text. Concerning stockout substitutions for bottled water, however, mixed logit’s

performance suffers relative to mixed probit. Within-sample (out-of-sample), the predicted probabilities of

consumers’ choices about bottled water substitutes are 2.2 (3.6) percentage points higher for mixed probit than

for mixed logit. (By comparison, the corresponding disparities in the main text are 0.9 and 1.9 percentage

points within- and out-of-sample, respectively.) For flour, the results do not change so dramatically.61

61Within-sample, the predicted probabilities of consumers’ choices about flour substitutes are 1.1 percentage point higher for
mixed logit than flour (versus 1.0 percentage points in the main text). Out-of-sample, the corresponding disparity is 1.8 percentage
points (versus 2.4 percentage points in the main text).
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G. Supplementary Results from Structural Estimation

Verifying the Mixed Logit IPA.—According to Corollary 1, the conditional probability of accepting a stockout

substitute—given one’s original order choice—should be identical to the unconditional probability of the

same. To verify that this is indeed the case, Appendix Table 2 compares two estimation approaches. The first

approach directly imposes the mixed logit IPA, resulting in the closed-form likelihood presented in Section 6B

of the main text. By contrast, the second approach simulates the likelihood function without imposing the

mixed logit IPA. Simulation proceeds in two steps. First, I compute the order choice probabilities by drawing

from the standard Gumbel distribution. And second, I calculate the accept/reject probabilities based solely

on the error draws that resulted in “correct” order predictions.

Appendix Table 2 – Verifying the Mixed Logit IPA by Simulation

Product category

Statistic Bottled water Flour

Frac. of stockouts with same prediction 0.997 0.997
Avg. absolute difference in predicted prob. accept 0.010 0.014
Root mean square difference in predicted prob. accept 0.024 0.038

Notes: This table compares the predictions of two mixed logit estimators: (i) directly imposing
the mixed logit IPA (and using the resultant closed-form likelihood), and (ii) simulating the choice
probabilities. For (ii), the accept/reject probabilities are solely based on Gumbel error draws that
result in the “correct” original online order. (Consequently, most of the 20,000 draws used to
compute the order probabilities are discarded for the accept/reject stage.)

Appendix Table 2 reports three measures of the similarity of the two estimation approaches. All these

measures pertain to the predicted probability of acceptance. The first measure is the fraction of stockout

substitutions in which both models predict the same outcome.62 As for the second measure, I compute

the average absolute difference between the two models’ predicted probabilities of acceptance. Letting

𝑠 ∈ {1, . . . , 𝑆} index (attempted) stockout substitutions, the measure is given by

AAD =
1
𝑆

𝑆∑︁
𝑠=1

|𝑃𝑠 − 𝑃̂𝑠 |

where 𝑃𝑠 indexes acceptance probabilities derived from the closed-form likelihood and 𝑃̂𝑠 denotes their

simulated counterparts. The third (and final) measure is the root-mean-square difference in predicted

62That is, I compute the fraction of substitutions in which either (i) both models assign a predicted probability of >50% to
acceptance or (ii) both assign a predicted probability of <50% to acceptance.
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acceptance probabilities:

RMSD =

√√√
1
𝑆

𝑆∑︁
𝑠=1

(𝑃𝑠 − 𝑃̂𝑠)2

Observe that the second and third measures are similar in spirit; both gauge the average “distance” in

acceptance probabilities. However, the average absolute difference employs the 𝐿1 norm whereas the root-

mean-square difference employs the 𝐿2 norm.

The results in Appendix Table 2 indicate that the two estimation approaches arrive at very similar predic-

tions. This is especially true where bottled water is concerned.63

Random Coefficients.—Appendix Table 3 reports summary statistics for the random coefficients (i.e., the

𝛽’s) in each product category. To compare the mixed logit coefficients with their mixed probit counterparts,

divide the former by
√

1.6. Concerning mixed probit, Appendix Table 3 also indicates the estimated

correlation parameter (𝜎) for the indicated “cluster” of products. This parameter is estimated to be 0.1 for

bottled water and 0.2 for flour.64

Whether the error terms are correlated or uncorrelated, mixed probit does not display an IPA property.65

Consequently, the model allow a consumer’s initial order to be correlated with her decision to accept or

reject a stockout substitute. In principle, this correlation might have no real-world economic content (being a

purely mathematical property). However, it is also possible that this correlation reflects real-world consumer

behavior. Regarding the latter hypothesis, recall that multinomial probit with uncorrelated errors—hereafter,

“independent probit”—does not suffer from the familiar independence of preferred alternatives (IIA) property

displayed by conditional logit (Paetz and Steiner 2017). Furthermore, independent probit relaxes the IIA

property in a systematic way. Consider a market with two goods: 𝐴 and 𝐵. Without loss of generality,

assume that good 𝐴 commands a larger choice share than does good 𝐵. Simulations performed by Paetz and

Steiner (2018) suggest that the introduction of a third good—say, 𝐶—will cause the choice share of the less

popular good (𝐵) to shrink more dramatically in percentage terms than the choice share of the more popular

good (𝐴).

63There are two reasons why the results for bottled water are more precise than those for flour. First, a larger fraction of error
draws translate to “correct” order predictions in the former category than in the latter (27% versus 20%). This leaves more draws
with which to simulate the accept/reject probabilities. And second, the utility specification for bottled water is more flexible than
the utility specification for flour. Whereas the former includes dummies for individual products, the latter relies on observable
characteristics (brand, flour type, quantity, etc.)

64I tested five potential correlation parameters in each category: {0, 0.1, 0.2, 0.3, 0.4, 0.5}.
65By way of example, consider a three-good market with goods 𝐴, 𝐵, and 𝐶. Suppose that 𝑢𝑖𝐴𝑡 = 𝜀𝑖𝐴, 𝑢𝑖𝐵𝑡 = 1 + 𝜀𝑖𝐵, and

𝑢𝑖𝐶𝑡 = 2 + 𝜀𝑖𝐵 (where the error terms are i.i.d. standard normal). Then Pr
[
𝑢𝑖𝐵𝑡 > 𝑢𝑖𝐶𝑡

�� 𝑢𝑖𝐴𝑡 = max 𝑗∈J 𝑢𝑖 𝑗𝑡
]
≈ 0.331 > 0.240 ≈

Pr[𝑢𝑖𝐵𝑡 > 𝑢𝑖𝐶𝑡 ].
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Appendix Table 3 – Summary Statistics on Structural Parameters

Panel A. Bottled water

Mixed logit Mixed probit

Variable Means Std. devs. Means Std. devs.

Price −0.682 0.675 −0.456 0.562
Aquafina (24 ct.)a 6.688 2.709 5.316 1.944
Ice Mtn. (24 ct.)a 7.635 2.443 5.966 1.728
Nestle (24 ct.)a 7.065 1.925 5.559 1.468
Pvt. lbl. purified water (24 ct.)a 7.518 1.447 6.166 1.056
Pvt. lbl. purified water (40 ct.)a 7.625 2.114 5.951 1.617
Pvt. lbl. spring water (24 ct.)a 8.497 1.980 6.279 1.431

Error correlation cluster 24-packs
Correlation parameter (𝜎) 0.1

Panel B. Flour

Price −1.974 1.060 −1.578 0.799
All-purpose flour 5.372 0.193 4.270 0.169
Bread flour 3.819 4.298 3.365 3.521
Gold Medal brand 1.237 2.972 0.867 1.698
King Arthur brand 1.006 4.123 0.288 3.148
Log quantity 2.134 1.229 1.512 0.977
Unbleached −0.639 3.375 −0.847 1.899

Error correlation cluster Bread flours
Correlation parameter (𝜎) 0.2

Notes: This table presents summary statistics for the nonparametrically-estimated distributions
of random coefficients. To compare the mixed logit coefficients with the mixed probit ones,
divide the former by

√
1.6. The “error correlation clusters” in mixed probit consist of products

whose error terms are correlated. See Appendix E for details.
a Product-specific dummy.
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The “Hit Rate.”—In Section 6D, I compare mixed logit and mixed probit’s goodness of fit based on the

average predicted probability assigned to consumers’ observed choices. An alternative measure of fit is the

fraction of observations in which consumers’ observed choices are assigned the highest predicted probability

of any alternative—hereafter, the “hit rate.”

The discussion in the main text focuses on the average predicted probabilities of consumers’ observed

choices—as opposed to the hit rate—for two reasons. First, the predicted probability of the chosen product

directly enters the likelihood function, whereas the “hit rate” does not. And second, the predicted probability

of the chosen product is more closely related to the product’s (estimated) cross-price elasticities than the “hit

rate” is.66

Appendix Table 4 – “Hit Rate:” Mixed Logit versus Mixed Probit

Panel A. Within sample

Bottled water Flour

Data type
Mixed
logit

Mixed
probit

Mixed
logit

Mixed
probit

In-store purchases and online orders 0.657 0.653 0.672 0.661
Stockout substitutions 0.959 0.959 0.951 0.948

Panel B. Out of sample

In-store purchases and online orders 0.571 0.568 0.652 0.646
Stockout substitutions 0.942 0.942 0.928 0.934

Notes: This table compares the “hit rates” of mixed probit and mixed logit models for the
product categories of bottled water and flour. The hit rate is defined as the fraction of
choice situations for which the model assigns the consumer’s observed choice the highest
predicted probability of any alternative. (See Sections 6B and 6D for details on estimation).

Appendix Table 4 compares the hit rates of mixed logit and mixed probit. Within sample, mixed logit

delivers a (weakly) higher hit rate for both data types, irrespective of product category. Out of sample, by

contrast, the results vary by data type. Regarding in-store purchases and online orders, mixed logit affords a

higher hit rate for both product categories. As for stockout substitutions, mixed probit provides an identical

hit rate for bottled water and a 0.6 percentage higher hit rate for flour.

Estimated Price Elasticities.—Appendix Tables 5 and 6 report estimated conditional price elasticities for

bottled water and flour, respectively.67 The top entry in each cell corresponds to mixed logit, whereas the

bottom one corresponds to mixed probit.
66The cross-price elasticity of good 𝑗 with respect to good 𝑗 ′ is defined as

(
𝜕𝑠 𝑗/𝜕𝑝 𝑗′

) (
𝑝 𝑗′/𝑠 𝑗

)
, where 𝑠 𝑗 denotes the market

share of good 𝑗 . In this equation, 𝑠 𝑗 is computed as the average predicted probability of 𝑗 being purchased (across all the observed
choice situations), while

(
𝜕𝑠 𝑗/𝜕𝑝 𝑗′

)
is defined as marginal changes in the same. See Train (2009).

67That is, conditional on purchasing an “inside good” (as opposed to the “outside option” of purchasing nothing.)
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Appendix Table 5 – Conditional Own- and Cross-Price Elasticities: Bottled Water

Nestle PL spring Ice Mtn. Aquafina PL pfd. PL pfd.
(24 ct.) (24 ct.) (24 ct.) (24 ct.) (40 ct.) (24 ct.) Model

Nestle Pure Life (24 ct.) −0.88 0.18 0.19 0.18 0.17 0.17 Logit
−1.00 0.21 0.22 0.22 0.19 0.20 Probit

Pvt. lbl. spring (24 ct.) 0.18 −0.85 0.20 0.16 0.16 0.18 Logit
0.20 −0.98 0.21 0.20 0.18 0.21 Probit

Ice Mtn. (24 ct.) 0.19 0.18 −0.92 0.19 0.17 0.16 Logit
0.21 0.19 −1.05 0.24 0.20 0.19 Probit

Aquafina (24 ct.) 0.17 0.15 0.19 −0.91 0.20 0.16 Logit
0.19 0.17 0.21 −1.02 0.21 0.19 Probit

Pvt. lbl. purified (40 ct.) 0.15 0.15 0.17 0.19 −0.81 0.16 Logit
0.16 0.16 0.18 0.19 −0.87 0.17 Probit

Pvt. lbl. purified (24 ct.) 0.17 0.18 0.17 0.17 0.18 −0.84 Logit
0.20 0.22 0.19 0.21 0.21 −1.01 Probit

Notes: Letting 𝑖 index rows and 𝑗 index columns, cell 𝑖, 𝑗 reports the percent change in product 𝑖’s market share when
product 𝑗’s price increases by one percent. The top entry in each cell corresponds to mixed logit, whereas the bottom one
corresponds to mixed probit.
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Appendix Table 6 – Conditional Own- and Cross-Price Elasticities: Flour

GM APB
(5 lb)

PL APB
(5 lb)

PL APB
(2 lb)

PL APU
(5 lb)

GM APU
(5 lb)

PL APB
(10 lb)

KA UBF
(5 lb)

GM HKB
(5 lb)

KA APU
(5 lb)

KA APU
(10 lb) Model

Gold Medal all-purpose bleached (5 lb) −1.96 0.28 0.21 0.20 0.20 0.21 0.22 0.17 0.21 0.23 Logit
−1.88 0.26 0.21 0.22 0.19 0.19 0.20 0.18 0.20 0.22 Probit

Pvt. lbl. all-purpose bleached (5 lb) 0.28 −1.88 0.25 0.22 0.17 0.20 0.18 0.18 0.20 0.24 Logit
0.26 −1.89 0.26 0.21 0.19 0.19 0.16 0.18 0.20 0.23 Probit

Pvt. lbl. all-purpose bleached (2 lb) 0.20 0.29 −1.88 0.28 0.21 0.20 0.20 0.17 0.15 0.15 Logit
0.20 0.30 −1.90 0.29 0.21 0.19 0.20 0.17 0.15 0.16 Probit

Pvt. lbl. all-purpose unbleached (5 lb) 0.21 0.25 0.33 −1.94 0.26 0.23 0.19 0.22 0.19 0.16 Logit
0.21 0.22 0.32 −1.86 0.27 0.21 0.18 0.18 0.17 0.14 Probit

Gold Medal all-purpose unbleached (5 lb) 0.23 0.20 0.27 0.30 −2.08 0.22 0.22 0.19 0.24 0.21 Logit
0.21 0.21 0.25 0.31 −1.94 0.22 0.19 0.20 0.19 0.19 Probit

Pvt. lbl. all-purpose bleached (10 lb) 0.22 0.24 0.23 0.25 0.22 −2.19 0.24 0.22 0.19 0.25 Logit
0.21 0.20 0.20 0.23 0.22 −1.93 0.22 0.20 0.17 0.20 Probit

King Arthur unbleached bread flour (5 lb) 0.24 0.21 0.22 0.20 0.21 0.26 −2.18 0.26 0.27 0.21 Logit
0.22 0.19 0.22 0.20 0.20 0.25 −2.04 0.28 0.24 0.20 Probit

Gold Medal “Harvest King” bread (5 lb) 0.18 0.22 0.20 0.22 0.18 0.21 0.26 −2.04 0.31 0.28 Logit
0.18 0.19 0.18 0.21 0.19 0.20 0.26 −1.93 0.29 0.26 Probit

King Arthur all-purpose unbleached (5 lb) 0.22 0.22 0.16 0.18 0.23 0.17 0.23 0.26 −1.91 0.34 Logit
0.21 0.21 0.16 0.18 0.19 0.17 0.21 0.26 −1.87 0.34 Probit

King Arthur all-purpose unbleached (10 lb) 0.23 0.27 0.16 0.15 0.18 0.21 0.18 0.23 0.27 −1.88 Logit
0.23 0.26 0.16 0.15 0.18 0.19 0.18 0.24 0.29 −1.87 Probit

Notes: See notes for Appendix Table 5
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